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Abstract

Dynamic economic models make predictions about impulse responses that characterize how

macroeconomic processes respond to alternative shocks over different horizons. From the per-

spective of asset pricing, impulse responses quantify the exposure of macroeconomic processes

and other cash flows to macroeconomic shocks. Financial markets provide compensations to

investors who are exposed to these shocks. Adopting an asset pricing vantage point, we describe

and apply methods for computing exposures to macroeconomic shocks and the implied com-

pensations represented as elasticities over alternative payoff horizons. The outcome is a term

structure of macroeconomic uncertainty.
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1 Introduction

Impulse response functions quantify the impact of alternative economic shocks on future economic

outcomes. In so doing, they provide a way to assess the importance of alternative sources of fluc-

tuations. Building on the insights of Yule (1927) and Slutsky (1927), Frisch featured an important

line of research on the “impulse and propagation problem” aimed at answering the question asking

what are the sources of fluctuations and how they are propagated over time. An impulse, captured

formally by the realization of a random shock, has an impact on an economic time series in all of

the subsequent time periods. Response functions depict the intertemporal responses. Sims (1980)

showed how to apply this approach in a tractable way to multivariate time series with a vector of

underlying shocks, and he exposed the underlying challenges for identification. Subsequent research

developed nonlinear counterparts to impulse response functions.

Macroeconomic shocks also play an important role in asset pricing. By their very nature,

macroeconomic shocks cannot be diversified and investors exposed to those shocks require compen-

sations. The resulting market-based remunerations differ depending how cash flows are exposed

to the alternative macroeconomic shocks. We call the compensations risk prices, and there is a

term structure that characterizes these prices as a function of the investment horizon. In this

chapter we study methods for depicting this term structure and illustrate its use by comparing

pricing implications across models. This leads us to formalize the exposure and pricing counterpart

to impulse response functions familiar to macroeconomists. We call these objects shock-exposure

and shock-price elasticities. Our calculations require either an empirical-based or model-based

stochastic discount factor process along with a representation of how alternative cash flows with

macroeconomic components respond to shocks.

There is an alternative way to motivate the calculations that we perform. A common character-

ization of risk aversion looks at local certainty equivalent calculations for small variance changes in

consumption. We deviate in two ways. First, when making small changes, we do not use certainty

as our benchmark but rather the equilibrium consumption from the stochastic general equilibrium

model. This leads us to make more refined adjustments in the exposure to uncertainty. Second,

movements in consumption at future dates could be induced by any of the macroeconomic shocks

with occurrences at dates between tomorrow and this future date. Thus, similar to Hansen et al.

(1999) and Alvarez and Jermann (2004), we have a differential measure depending on the specific

shock and the dates of the impacts.

Empirical finance often focuses on the measurement of risk premia on alternative financial assets.

In our framework, these risk premia reflect the exposure to uncertainty and the compensation for

that exposure. Risk premia change when exposures change, when the prices of those exposures

change or both. We use explicit economic models to help us quantify these two channels by which

risk premia are determined, but a more empirically-based approach could also be applied provided

that the uncertainty prices for shocks could be inferred. While there are interesting challenges in

identification to explore, we will abstract from those challenges in this chapter.

Our chapter:
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• defines and constructs a term structure of shock-exposure and shock-price elasticities appli-

cable to nonlinear Markov models;

• compares these constructions to impulse response functions commonly used in macroeco-

nomics;

• describes computational approaches pertinent for discrete-time and continuous-time models;

• applies the methods to continuous-time macroeconomic models with financing frictions pro-

posed by He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014).

2 Mathematical framework

We introduce a framework designed to encompass a large class of macroeconomic and asset pricing

general equilibrium models. There is an underlying stationary Markov model that is used to capture

the stochastic growth of a vector of time series of economic variables. The Markov model emerges as

the “reduced form” of a solution to a dynamic stochastic equilibrium model of the macroeconomy.

Modeling stationary growth rates allows for inclusion of shocks that have permanent effects and

nontrivial long-horizon implications for risk compensations. We provide a range of illustrative

applications of this framework throughout the chapter, and we devote Sections 7 to a more extensive

exploration of nonlinear continuous-time models with financial constraints.

We start with a probability space (Ω,F , P ). On this probability space, there is an n-dimensional,

stationary and ergodic Markov process X = {Xt : t ∈ N} and a k-dimensional process W of inde-

pendent and identically distributed shocks. Unless otherwise specified, we assume that each Wt is

a multivariate standard normal random variable. We will have more to say about discrete states

and shocks that are not normally distributed in Section 3.5.

The Markov process is initialized at X0. Denote F = {Ft : t ∈ N} the completed filtration

generated by the histories of W and X0. We suppose that X is a solution to a law of motion

Xt+1 = ψ (Xt,Wt+1) (1)

Yt+1 − Yt = φ (Xt,Wt+1)

The state vector Xt contains both exogenously specified states and endogenous ones. We presume

full information in the sense that the shock Wt+1 can be depicted in terms of (Xt, Yt+1 − Yt). In

more general circumstances we would incorporate a solution to a a filtering problem if we are to

match an information structure to (X,Y ), a filtering problem that is perhaps solved by economic

agents.

Consistent intertemporal pricing together with the Markov property lead us to use a class of

stochastic processes called multiplicative functionals. These processes are built from the underlying

Markov process and will be used to model cash flows and stochastic discount factors. Since many

macroeconomic time series grow or decay over time, we use the state vector X to model the growth
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rate of such processes. In particular, let the dynamics of a multiplicative functional M be defined

as1

logMt+1 − logMt = κ (Xt,Wt+1) . (2)

The components of Y are examples of multiplicative functionals. Since X is stationary, the process

logM has stationary increments. A revealing example is the conditionally linear model

κ (Xt,Xt+1) = β (Xt) + α (Xt) ·Wt+1

where β (x) allows for nonlinearity in the conditional mean, and α (x) introduces stochastic volatil-

ity.

We denote G a generic cash-flow process and S the equilibrium determined stochastic discount

factor process, both modeled as multiplicative functionals. While we adopt a common mathematical

formulation for both, G is expected to grow and S is expected to decay over time, albeit in stochastic

manners.

Equilibriummodels in macroeconomics and asset pricing build on the premise of utility-maximizing

investors trading in arbitrage-free markets. Arbitrage-free pricing implies the existence of a strictly

positive stochastic discount factor process S that can be used to infer equilibrium asset prices.

Stochastic discount factors provide a convenient way to depict the observable implications of asset

pricing models.2 In this chapter, we consider a stochastic discount factor process that compounds

the one-period stochastic discount factors in order to value multiperiod claims.

Definition 2.1. A stochastic discount factor S is a positive (with probability one) stochastic process

such that for any t, j ≥ 0 and payoff Gt+j maturing at time t+ j, the time-t price is given by

Qt [Gt+j ] = E

[(
St+j

St

)
Gt+j | Ft

]
. (3)

Notice that this definition does not restrict the date zero stochastic discount factor, S0. This

initialization may be chosen in a convenient manner. If markets are complete, then this stochastic

discount factor is unique up to the initialization. Equations of the type (3) arise from investors’

optimality conditions in the form of Euler equations. In an equilibrium model with complete

markets, the stochastic discount factor is typically equated with the marginal rate of substitution

of an unconstrained investor. The identity of such a person can change over time and across

states. In some models with incomplete markets, the stochastic discount factor process ceases to be

unique. There are different shadow prices for non-traded risk exposures but a common pricing of the

exposures with explicit compensations in financial markets. With other forms of trading frictions,

the pricing equalities can be replaced by pricing inequalities, still expressed using a stochastic

discount factor.

In our framework, we will suppose that equilibrium stochastic discount factors inherit the

1Multiplicative functionals are often initialized to be at one, or equivalently logM0 = 0. We will abuse this jargon
a bit by allowing ourselves other possible initiations.

2See Hansen and Richard (1987) for an initial discussion of stochastic discount factors.
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multiplicative functional structure. Market frictions, portfolio constraints and other types of market

imperfections will then introduce distortions into formula (3). We will study such distortions in

models with financial constraints in Section 7.

Notice that definition (3) of the stochastic discount factor involves an expectations operator.

This expectations operator in general represents investors’ beliefs about the future. Here, we

have imposed rational expectations by assuming that investors’ beliefs are identical to the data-

generating probability measure P . This measure is that implied by historical evidence or by the

fully specified model. Investors’ beliefs, however, may differ from P and there exists alternative

approaches to modeling these deviations in interesting ways. While the modeling of investors’

beliefs is an important building block of the asset pricing framework, in this chapter we abstract

from these considerations and impose rational expectations throughout the text.

3 Asset pricing over alternative investment horizons

We price cash flows exposed to macroeconomic uncertainty and modeled as multiplicative processes.

Consider a generic cash flow process G, say the dividend process or an equilibrium consumption

process. We start with a baseline payoff Gt maturing in individual periods t = 0, 1, 2, . . . and

parameterize stochastic perturbations of this process. In particular, we derive measures that cap-

ture the sensitivity of expected payoff to exposure to alternative macroeconomic shocks, and the

sensitivity of the associated risk compensations. We follow the convention in empirical finance by

depicting compensations in terms of expected returns per unit of some measure of riskiness. The

compensations differ depending upon which shock we target when we construct stochastic pertur-

bations. The method relies on a comparison of the pricing of payoff Gt relative to another payoff

that is marginally more exposed to risk in a particular way.

The cash flows G arising from equilibrium models will often have the form of multiplicative

processes (2). A special case of such cash flows are payoffs that are positive functions of the

Markov state, ψ (Xt). These payoffs will be featured prominently in our subsequent analysis.

3.1 One-period pricing

We are interested in the pricing of payoffs maturing at different horizons but we start with a simple

one-period conditionally lognormal environment. This environment will provide an explicit link to

familiar calculations in asset valuation. Suppose that

logG1 = βg (X0) + αg (X0) ·W1

logS1 − logS0 = βs (X0) + αs (X0) ·W1

where G1 is the payoff to which we assign values and S1 is the one-period stochastic discount factor

used to compute these values. The one-period return on this investment is the payoff in period one
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divided by the period-zero price:

R1
.
=

G1

Q0 [G1]
=

(
G1

G0

)

E
[(

S1

S0

)(
G1

G0

)
| X0

] .

The logarithm of the expected return can then be calculated explicitly as:

logE [R1 | X0 = x] = logE

[(
G1

G0

)
| X0 = x

]
− logE

[(
S1
S0

)(
G1

G0

)
| X0 = x

]
(4)

= −βs (x)−
|αs (x)|

2

2︸ ︷︷ ︸
risk-free rate

− αs (x) · αg (x)
︸ ︷︷ ︸
risk premium

.

This compensation is expressed in terms of expected returns as is typical in asset pricing. Notice

that we are using logarithms of proportional risk premia as a starting point.

Imagine applying this calculation to a family of such payoffs parameterized in part by αg. The

vector αg defines a vector of exposures to the components of the normally distributed shock W1.

Then −αs is the vector of shock “prices” representing the compensation for exposure to these

shocks.

The risk prices in this conditionally lognormal model have a familiar conditional linear structure

known from one-period factor models. In these models, the so called factor loadings αg on the

individual shocks W1 are multiplied by factor prices −αs. The total compensation in terms of an

expected return is thus the product of the quantity of risk (risk exposure), and the price per unit of

this risk. There are analogous simplifications for continuous-time diffusion models since the local

evolution in such models is conditionally normal.

In a nonlinear multiperiod environment, this calculation ceases to be straightforward. We would,

however, still like to infer measures of the quantity of risk and the associated price of the risk. We

therefore explore a related derivation that will yield the same results in this one-period lognormal

environment but will also naturally extend to a nonlinear setup and multiple-period horizons.

3.1.1 One-period shock elasticities

We parameterize a family of random variables H1 (r) indexed by r using

logH1 (r) = rν (X0) ·W1 −
r2

2
|ν (X0)|

2 (5)

where r is an auxiliary scalar parameter. The vector of exposures αh (X0) is normalized to

E
[
|ν (X0)|

2
]
= 1.

With this normalization,

E [H1 (r) |X0] = 1.
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Even when shocks are not normally distributed, we shall find it convenient to construct H1 (r) to

have a unit conditional expectation.

Given the baseline payoff Gt, form a parameterized family of payoffs G1H1 (r) given by

logG1 − logG0 + logH1 (r) = [αg (X0) + rν (X0)]︸ ︷︷ ︸
new shock exposure

·W1 + βg (X0)−
r2

2
|ν (X0)|

2 .

The new cash flow G1H1 (r) has shock exposure αg (X0) + rν (X0) and is thus more exposed to the

vector of shocks W1 in the direction ν (X0). By changing r we alter the magnitude of the exposure

in direction ν (X0). By choosing different vectors ν (X0), we alter the combinations of shocks whose

impact we want to investigate. A typical example of an ν (X0) would be a coordinate vector ej with

a single one in j-th place. In that case, we infer the pricing implications of the j-the component of

the shock vector W1. In some applications it may be convenient to make ν (X0) explicitly depend

on X0. For instance, Borovička et al. (2011) propose scaling of ν with X0 in models with stochastic

volatility.

The payoffs G1H1 (r) imply a corresponding family of logarithms of expected returns as in

equation (4):

logE [R1 (r) | X0 = x] = logE

[(
G1

G0

)
H1 (r) | X0 = x

]
− logE

[(
S1
S0

)(
G1

G0

)
H1 (r) | X0 = x

]
.

We are interested in comparing the expected return of the payoff G1H1 (r) relative to G1 =

G1H1 (0). Since our exposure direction ν (X0) has a unit standard deviation, by differentiating

with respect to r we compute an elasticity

d

dr
logE [R1 (r) | X0 = x]|r=0

=
d

dr
logE

[(
G1

G0

)
H1 (r) | X0 = x

]∣∣∣∣
r=0

−
d

dr
logE

[(
S1
S0

)(
G1

G0

)
H1 (r) | X0 = x

]∣∣∣∣
r=0

.

This elasticity measures the sensitivity of the expected return on the payoff G1 to an increase in

exposure to the shock in the direction ν (x). The calculation leads us to define the counterparts of

quantity and price elasticities from microeconomics:

1. The one-period shock-exposure elasticity

εg (x, 1) =
d

dr
logE

[(
G1

G0

)
H1 (r) | X0 = x

]∣∣∣∣
r=0

= αg (x) · ν (x)

measures the sensitivity of the expected payoff G1 to an increase in exposure in the direction

ν (x).
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2. The one-period shock-price elasticity

εp (x, 1) =
d

dr
logE

[(
G1

G0

)
H1 (r) | X0 = x

]∣∣∣∣
r=0

−
d

dr
logE

[(
S1
S0

)(
G1

G0

)
H1 (r) | X0 = x

]∣∣∣∣
r=0

= −αs (x) · ν (x)

measures the sensitivity of the compensation, in units of expected return, for this exposure.

Notice that the shock-exposure elasticity recovers the exposure vector αg (x), and individual com-

ponents of this vector can be obtained by varying the choice of the direction of the perturbation

ν (x). Similarly, the shock-price elasticity recovers the vector of prices −αs (x) associated with the

risks embedded in the shock W1.

In this one-period case, we replicated a straightforward decomposition of the expected return

(4) into quantities and prices of risk. Now we move to the characterization of the asset pricing

implications over longer horizons.

3.2 Multi-period investment horizon

Consider the parameterized payoff GtH1 (r) with a date-zero price E [StGtH1 (r) | X0 = x]. This is

a payoff maturing at time t that has the same growth rate as payoff Gt except period one when

the growth rate is stochastically perturbed by H1 (r). The logarithm of the expected return (yield

to maturity) is

logE [R0,t (r) | X0 = x]
.
= logE

[(
Gt

G0

)
H1 (r) | X0 = x

]
− logE

[(
St
S0

)(
Gt

G0

)
H1 (r) | X0 = x

]
.

Following our previous analysis, we construct two elasticities:

1. shock-exposure elasticity

εg (x, t) =
d

dr
logE

[(
Gt

G0

)
H1 (r) | X0 = x

]∣∣∣∣
r=0

2. shock-price elasticity

εp (x, t) =
d

dr
logE

[(
Gt

G0

)
H1 (r) | X0 = x

]∣∣∣∣
r=0

−
d

dr
logE

[(
St
S0

)(
Gt

G0

)
H1 (r) | X0 = x

]∣∣∣∣
r=0
(6)

These elasticities are functions of the investment horizon t, and thus we obtain a term structure

of elasticities. The dependence on the current state X0 = x incorporates possible time-variation in

the sensitivity of expected returns to exposure to shocks.
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3.3 A change of measure and an impulse response for a multiplicative functional

Notice that the shock elasticities defined in the previous subsection have a common mathematical

structure expressed using the multiplicative functionals M = S and M = SG. Given a multiplica-

tive functional M , we define

ε (x, t) =
d

dr
logE

[(
Mt

M0

)
H1 (r) | X0 = x

]∣∣∣∣
r=0

(7)

Taking the derivative in (7), we obtain

ε (x, t) = ν (x) ·
E
[(

Mt

M0

)
W1 | X0 = x

]

E
[(

Mt

M0

)
| X0 = x

] (8)

Thus a major ingredient in the computation is the covariance between
(

Mt

M0

)
and W1 conditioned

on X0.

The random variable H1(r) given by (5) is positive and has expectation equal to unity condi-

tioned on X0. Multiplication by the this random variable has the interpretation of changing the

probability distribution of W1 from having mean zero to having a mean given by rν(X0). Thus

given a multiplicative process M

E

[(
Mt

M0

)
H1 (r) | X0 = x

]
= E

[
H1(r)E

[(
Mt

M0

)
| X0,W1 | X0

]]

= Ẽ

(
E

[(
Mt

M0

)
| X0,W1

]
| X0 = x

)

where Ẽ presumes that the random vector W1 is distributed as a multivariate normal with mean

rν(x) consistent with our multiplication by H1(r).

3.4 Long-horizon pricing

Shock elasticities depict the term structure of risk as we change the maturity of priced payoffs.

To aid our understanding of the overall shape of the term structure of elasticities, we characterize

the long-horizon limits of these shock elasticities. We provide a characterization for a general

multiplicative process that takes the form of a factorization. A multiplicative process is a product

of a geometric constant growth or decay process, a positive martingale and a ratio of a function of

the Markov state in date zero and date t. Since the factorization is applicable to any member of

a general class of multiplicative processes, we apply it to both stochastic discount factor processes

and positive cash flow processes.

As in Hansen and Scheinkman (2009) and Hansen (2012), we use Perron–Frobenius theory to

provide a factorization of multiplicative processes. Given a multiplicative process M , solve the
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equation

E

[(
Mt

M0

)
e (Xt) | X0 = x

]
= exp (ηt) e (x) (9)

for an unknown function e (x) that is strictly positive and an unknown number η. The solution is

independent of the choice of the horizon t.

Consider the pair (e, η) that solves (9) and form

M̃t

M̃0

.
= exp (−ηt)

e (Xt)

e (X0)

(
Mt

M0

)
. (10)

The stochastic process M̃ is a martingale under P , since

E
[
M̃t+1 | Ft

]
=

exp [−η (t+ 1)]

e (X0)

Mt

M0
M̃0E

[
Mt+1

Mt

e (Xt+1) | Ft

]
=

= exp (−ηt)
e (Xt)

e (X0)

Mt

M0
M̃0 = M̃t.

Consequently, expression (10) can be reorganized as

Mt

M0
= exp (ηt)

e (X0)

e (Xt)

M̃t

M̃0

(11)

This formula provides a multiplicative decomposition of the multiplicative functional M into a

deterministic drift exp (ηt), a stationary function of the Markov state e (x) and a martingale M̃ .

This martingale component will be critical in characterizing long-term pricing implications.

Associated with the martingale M̃ is a probability measure P̃ such that for every measurable

function Z of the Markov process between dates zero and t,

E
(
M̃tZ | X0 = x

)
= Ẽ (Z | X0 = x)

where Ẽ (· | X0 = x) is the conditional expectation operator under the probability measure P̃ .3

In finite state spaces, equation (9) can be posed as a matrix problem with a solution that is an

eigenvector with positive entries.

Example 3.1. In a finite-state Markov chain environment, equation (9) is a standard eigenvalue

problem. Let realized value of the Xt be represented as alternative coordinate vectors. Suppose the

ratio Mt+1

Mt
satisfies

Mt+1

Mt

= (Xt+1)
′MXt

for some square matrix M. In the same way, represent the one-period transition probabilities as a

3In order to completely define the measure P̃ , we also need to specify the unconditional probability distribution.
For instance, M̃0 can be initiated to make P̃ stationary. Since all pricing results in this chapter utilize conditional
probability distributions, we abstract from these considerations here.
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matrix P. For t = 1, equation (9) becomes a vector equation

(P ∗M) e = exp (η) e

where the operator ∗ depicts elementwise multiplication, (P ∗M)ij = PijMij. When

∞∑

j=0

λj (P ∗M)j

has all strictly positive entries for some 0 < λ < 1, the Perron–Frobenius theorem implies the

existence of a unique normalized strictly positive eigenvector e associated with the largest eigenvalue

exp (η) of the matrix P ∗M. Then e(Xt) in formula (9) is e ·Xt.

In continuous state spaces, this factorization may not yield a unique strictly positive solution

e (x). Hansen and Scheinkman (2009) and Borovička et al. (2015) provide selection criteria based

on the stochastic stability of the probability measure implied by the martingale component to

guarantee uniqueness. Stochastic stability ensures that we have a valuable way to compute limiting

approximations once we change measures. Here, we will assume that we have selected such a

solution.4

Factorization (11) leads to a characterization of long-horizon limits for the shock elasticities.

Using this factorization in expression (7), we obtain

ε (x, t) = ν (x) ·
Ẽ [ê (Xt)W1 | X0 = x]

Ẽ [ê (Xt) | X0 = x]

where ê (x)
.
= 1/e (x). Under technical assumptions, we find that5

lim
t→∞

ε (x, t) = ν (x) · Ẽ [W1 | X0 = x] .

Factorization (11) leads to a characterization of long-horizon limits for the shock elasticities.

Using this factorization in expression (7), we obtain

ε (x, t) = ν (x) ·
Ẽ [ê (Xt)W1 | X0 = x]

Ẽ [ê (Xt) | X0 = x]

where ê (x)
.
= 1/e (x). Under technical assumptions the long-maturity limit for the shock elasticity

is given by

lim
t→∞

ε (x, t) = ν (x) · Ẽ [W1 | X0 = x] .

The sensitivity of long-horizon payoffs to current shocks is therefore determined by the martingale

components of the stochastic discount factor and the cash flow, and their implications for the

4Our formulation presumes an underlying Markovian structure. See Qin and Linetsky (2014b) for a more general
starting point and an analogous factorization.

5See Hansen and Scheinkman (2012) for a version of this result for a continuous-time diffusion model.
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expectations of shock W1 as captured by the implied change in probability measures.

3.5 Non-Gaussian frameworks

While we have made special reference to normally distributed shocks, our mathematical structure

does not require this. We have featured perturbations H1(r) that are positive and expectations one.

Risk prices in financial economics are denominated in terms of expected mean compensation per unit

of risk. With normally distributed shocks, we measure risk in units of standard deviations. Provided

that we adopt an interpretable way to denominate risk prices for other distributions, our methods

continue to apply beyond the conditionally Gaussian framework. For instance, Zviadadze (2016)

constructs shock elasticities in a stochastic environment with autoregressive gamma processes.

Another example are regime-shift models that may include both normally distributed shocks

along with uncertain regimes. Exposure to macroeconomic regime-shift risk is of interest and can

be characterized using shock elasticities by structuring appropriately the random variable H1(r).

These switches can be exogenous (e.g., exogenously modeled periods of low or high growth and

volatility) or endogenous (e.g., interest rate at the zero lower bound, financial sector in a period

of binding financial constraints, or regime changes in government policies). We develop shock

elasticities for regime-shift risk in Borovička et al. (2011).

For Markov chain models used to capture the regime shift dynamics of exogenous shocks see

David (2008), Chen (2010) or Bianchi (2015) for some recent examples in the asset pricing literature

and Liu et al. (2011) and Bianchi et al. (2013) in macroeconomic modeling. Regime switches are

also utilized to model time-variation in government policies, see Sims and Zha (2006), Liu et al.

(2009) and Bianchi (2012) for regime switching in monetary policy rules, Davig et al. (2010, 2011)

and Bianchi and Melosi (2015) for fiscal policy applications and Chung et al. (2007) and Bianchi

and Ilut (2015) for a combination of both. Farmer et al. (2011) and Foerster et al. (2014) ana-

lyze solution and estimation techniques in Markov chain models in conjunction with perturbation

approximation methods. In Borovička and Hansen (2014), we introduce a tractable exponential-

quadratic framework that permits semi-analytical formulas for shock elasticities and encompasses

a large class of models solved using perturbation techniques.

4 Relation to impulse response functions

Impulse responses to specific structural shocks are a common way of representing the dynamic

properties of macroeconomic models. As we mentioned previously, this idea goes back at least to

Frisch (1933). Our elasticity computations change exposures of cash flows to shocks and explore

the consequences for valuation. These constructs are closely related and in some circumstances

are mathematically identical to impulse response functions. We explore these connections in this

section.

To relate our elasticity calculation to an impulse response function, consider the conditional
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expectation

E

[(
Mt

M0

)
| X0,W1 = w

]

for alternative choices of w. Changing the value of w gives rise to the impulse response of Mt to

a shock at date one. Instead of conditioning on alternative realized values of the shock at date

one, as we have seen our computations are equivalent to changing the date zero distribution of W1.

A similarity in perspectives emerges because this distributional change could include a mean shift

in the distribution for W1. In practice, empirical macroeconomists typically study expectations

of the logarithms of macroeconomic time series, often using linear models. For asset pricing it is

important that we work with expectations of levels of macroeconomic quantities and cash flows,

and account for nonlinearities. To compute shock elasticities we are lead to study the impact on

the logarithm of the conditional expectation of Mt as developed in formula (7). In the remainder

of this section, we consider two special cases in which the link to impulse functions is particularly

close.

4.1 Lognormality

When M is a lognormal process, the impulse response functions for logM matches exactly our

shock elasticity as we will now see.

A linear vector-autoregression (VAR) model is special case of the framework (1). Specifically

X is a linear vector-autoregression with autoregression coefficient matrix µ̄ and shock exposure

matrix σ̄:

Xt+1 = µ̄Xt + σ̄Wt+1. (12)

We assume that the absolute values of eigenvalues of the matrix µ̄ are strictly less than one.

Analogously, we introduce a multiplicative process M (constructed in general form in (2)) with

evolution:

logMt+1 − logMt = β̄ ·Xt + ᾱ ·Wt+1. (13)

The shock Wt+1 is distributed as a multivariate standard normal. With this construction of the

multiplicative process M , we first study the responses of logM .

4.1.1 Impulse response functions

Let ν(x) = ν̄ where ν̄ is a vector with norm one. In typical applications, ν̄ is a coordinate vector.

The impulse response function of Yt for the linear combination of shocks chosen by the vector ν̄ is

given by

E [logMt − logM0 | X0 = x,W1 = ν̄]−E [logMt − logM0 | X0 = x,W1 = 0] = ν̄ · ¯̺t.

where the coefficients satisfy the recursions implied by (12) and (13). From (13), we have the

recursion:

¯̺t+1 − ¯̺t =
(
ζ̄t
)′
β̄ (14)

14



with initial condition ¯̺1 = ᾱ, and from (12):

ζ̄t+1 = µ̄ζ̄t (15)

with initial condition ζ̄1 = σ̄. Solving these recursions gives:

ζ̄t = µ̄t−1σ̄ (16)

¯̺t = ᾱ+
[
(I − µ̄)−1 (I − µ̄t−1

]
σ̄
)′
β̄.

The impulse response function in the linear model is thus a sequence of deterministic coefficients

ν̄ · ¯̺t. The first term, ᾱ · ν̄, represents the immediate response arising from realization ν̄ of the

current shock while the remaining terms capture the subsequent propagation of the shock through

the dynamics of state vector X as it influences logM in the future.

4.1.2 Shock elasticities

Consider now our elasticity calculation. Write logMt as its moving-average representation:

logMt =

t−1∑

j=0

¯̺j ·Wt−j + E (logMt | F0) ,

or equivalently

logMt − logM0 =
t∑

j=1

¯̺j ·Wt−j+1 + E (logMt − logM0 | X0)

=
t−1∑

j=1

¯̺j ·Wt−j+1 + ¯̺t ·W1 + E (logMt − logM0 | X0) .

Since the shocks Wt are independently distributed as a multivariate standard normals over time,

E

[(
Mt

M0

)
| X0 = x,W1 = w

]
= exp


1

2

t−1∑

j=1

¯̺j · ¯̺j


 exp (¯̺t ·W1) exp (E [logMt − logM0 | X0])

Using formula (8), we compute:

ε (x, t) =
E
[(

Mt

M0

)
W1 | X0 = x

]

E
[(

Mt

M0

)
| X0 = x

] =
E [exp (¯̺t ·W1)W1 | X0 = x]

E [exp (¯̺t ·W1)]
= ¯̺t

The second equality follows by observing that

exp (¯̺t ·W1)

E [exp (¯̺t ·W1)]
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is strictly positive and has conditional expectation one. Multiplication by this random variable is

equivalent to changing the distribution ofW1 from a multivariate standard normal to a multivariate

normal with mean ¯̺t. To summarize, in this lognormal case, the shock elasticities do not depend on

the Markov state and they coincide with the impulses responses measured by ν̄ · ¯̺t for t = 1, 2, . . ..

Consider in particular the shock-price elasticity (6). Notice that this shock-price elasticity

consists of the difference of shock elasticities for G and SG, and thus we are lead to compute impulse

response functions for logG and log S + logG. The additivity of the construction implies that the

impulse response function coefficients for the latter are ν̄ · ¯̺s,t + ν̄ · ¯̺g,t, and thus the resulting

shock-price elasticity corresponds to the impulse response function of − log S, with coefficients

−ν̄ · ¯̺s,t.

4.1.3 Long-term pricing revisited

In this example, as discussed in Hansen et al. (2008) there is a close link between the factorization

described in Section 3.4 and the additive decompositions of linear time series. Beveridge and Nelson

(1981) and Blanchard and Quah (1989) extracted a martingale component in linear models and

used it to characterize the impact of permanent shocks.6

Consider solving

E

[(
M1

M0

)
e (X1) | X0 = x

]
= exp (η) e (x)

for the pair (e, η), where the evolution of M is given by (13). In this special case, a straightforward

calculation using formulas for lognormals gives:

log e(x) = E




∞∑

j=0

β̄ ·Xt+j |Xt = x




= (β̄)′(I − µ̄)−1x,

and7

η =
1

2
|ᾱ′ + β̄′(I − µ̄)−1σ̄|2.

Under the change of measure associated with the martingale M̃ in the multiplicative factoriza-

tion, W1 has a mean equal to

σ̄′(I − µ̄′)−1β̄ + ᾱ

which is independent of the state vector. Notice that this is also the limiting value of ¯̺t as given

in (16). In this lognormal example

logMt+1 − logMt + log e(Xt+1)− log e(Xt) =
[
β̄′(I − µ̄′)−1σ̄ + ᾱ′

]
Wt+1

6Hansen (2012) constructs an additive decomposition of logM in a continuous-time version of our nonlinear
framework.

7If we were to include a constant included in the evolution of logM , this would be added to η.
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where the right-hand side gives the permanent shock to logM as constructed in Beveridge and

Nelson (1981) and Blanchard and Quah (1989). In VAR analyses, transitory shocks are typically

constructed as linear combinations of Wt+1 that are uncorrelated with this permanent shock. On

the other hand log e(Xt+1) and its innovation are typically correlated with the permanent shock.

This simple connection between permanent shocks and permanent components to pricing ceases

to hold in more general nonlinear environments. Hansen (2012) has a more complete discussion

of the relation between the permanent component to logM and the martingale component to M

outside this lognormal specification.

4.2 Continuous-time diffusions

In this subsection, we focus on a framework with uncertainty modeled using Brownian shocks, and

apply it to models with financial constraints in Section 7. While the Brownian information setup

is not without loss of generality, it provides tools for a pedagogically transparent treatment and

shows the close connection between shock elasticities and impulse responses. In Borovička et al.

(2011) we also consider jumps in the form of regime shifts in continuous-time Markov chains and

applications to consumption-based asset pricing models.

Let X be a Markov diffusion on X ⊆ R
n:

dXt = µ(Xt)dt+ σ(Xt)dWt

with initial condition X0 = x. Here, µ(x) is an n-dimensional vector and σ(x) is an n×k matrix for

each vector x in R
n. In addition W is a k-dimensional Brownian motion. We use this underlying

Markov process to construct a multiplicative process M via:

logMt = logM0 +

∫ t

0
β(Xu)du+

∫ t

0
α(Xu) · dWu (17)

where β(x) is a scalar and α(x) is a k-dimensional vector, or, in differential notation,

d logMt = β (Xt) dt+ α (Xt) · dWt. (18)

Thus Mt depends on the initial conditions (X0,M0) = (x,m) and the innovations to the Brownian

motion W between dates zero and t. Let {Ft : t ≥ 0} be the (completed) filtration generated by

the Brownian motion between time zero and time t along with any initial information captured

by F0.

As before, stochastic discount factors and cash flows in this environment are specific versions

of a multiplicative process M . This multiplicative process is exposed to two types of risk. The first

source of risk exposure is the ‘local’, or infinitesimal, risk in term α(Xu) · dWu in (17). The second

source of risk comes from the time-variation in Xt and the state dependence of coefficients β (x)

and α (x), and is manifested over longer horizons.
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4.2.1 Haussmann–Clark–Ocone formula

There is a natural counterpart to a moving-average representation for diffusions. Importantly,

the moving-average coefficients are, in general, state dependent. They entail computing so-called

Malliavin derivatives of the date-u shock to the process logMt for t ≥ u, denoted Du logMt. We

do not develop Malliavin differentiation as a formal mathematical construct but instead proceed

heuristically.8 This calculation of a Malliavin derivative gives the random response to a shock at

date u and is only restricted to be t-measurable where t ≥ u. By forming the date-u conditional

expectation we get the expected response as of the date of the shock. The computation is localized

by making the time interval over which the shock acts on the process logMt arbitrarily small, which

allows for the formal construction of a derivative.

The calculation of Du logMt has two uses analogous to the lognormal example we examined

earlier. First, the (random) impulse response function for logM

̺t(X0) = ν(X0) · E (D0 logMt | F0) = ν(X0) · E [D0 (logMt − logM0) | X0]

for t ≥ 0 where ν(X0) determines which conditional linear combination of the shocks is subject

to an impulse. The resulting responses depend on conditioning information captured by X0, in

contrast to lognormal models in which responses depend only on the horizon t ≥ 0. Relatedly

we obtain the Haussmann–Clark–Ocone formula for the process logM that cumulates the impact

shocks at various dates as a stochastic integral:

logMt =

∫ t

0
E (Du logMt | Fu) · dWu + E (logMt | F0) .

where we may think of E (Du logMt | Fu) as the counterpart to a coefficient vector in a moving-

average representation. These random variables satisfy recursions analogous to (14) and (15). For

a more detailed construction, see Borovička et al. (2014).

We use the rules of Malliavin differentiation (analogous to more familiar forms of differentiation):

DuMt =MtDu logMt,

implying that the impulse response function for the process M is

ν(X0) ·E (D0Mt|F0) = ν(X0) · E (MtD0 logMt|F0)

=M0ν(X0) ·E

[(
Mt

M0

)
D0 (logMt − logM0) |X0

)

for t ≥ 0.

8For a textbook treatment of Malliavin calculus see Di Nunno and Øksendal (2009) or Nualart (2006).
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4.2.2 Shock elasticities for diffusions

The construction of shock elasticities in Section 3 perturbs the cash flow by exposing it to a specified

shock in the next period. In the continuous-time model, we devise a perturbation of M over a short

time interval [0, r] and then study the implications as r ց 0. The resulting construction exploits

the local linearity of continuous-time models with Brownian shocks.

Specifically, we construct the process H r such that

logH r
t =

∫ r∧t

0
ν (Xu) · dWu −

1

2

∫ r∧t

0
|ν (Xu)|

2 du.

where r ∧ t = min {r, t}. Notice that this process is exposed to the Brownian shock on the time

interval [0, r], with exposure vector ν (x), and stays constant after r. We assume that ν (x) is

restricted so that the process H r is a martingale. We use H r to construct the perturbed process

MH r:

logMt + logH r
t = logM0 +

∫ t

0
β(Xu)du−

1

2

∫ r∧t

0
|ν (Xu)|

2 du

+

∫ t

0
α(Xu) · dWu +

∫ r∧t

0
ν (Xu) · dWu

Notice that on the interval [0, r], the exposure of the perturbed process to the Brownian shock is

[α(Xu) + ν (Xu)] · dWu.

As r ց 0, we are perturbing logM over an arbitrarily small interval.

As in Borovička et al. (2014), we define the shock elasticity for M at horizon t as

ε (x, t) = lim
rց0

1

r
logE

[(
Mt

M0

)
H r

t | X0 = x

]

and show that this limit can be expressed as

ε(x, t) = ν(x) ·
E
(
D0

Mt

M0
| X0 = x

)

E
[(

Mt

M0

)
| X0 = x

]

= ν(x) ·
E
[(

Mt

M0

)
D0 logMt | X0 = x

)

E
[(

Mt

M0

)
| X0 = x

] . (19)

The first equality in (19) is a limiting version of (8) divided by E
[(

Mt

M0

)
| X0 = x

]
since the

Haussmann–Clark–Ocone formula applied to Mt

M0
has a contribution

E

(
D0

Mt

M0
| X0 = x

)
dW0
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for the date zero increment. The limiting covariance between Mt

M0
and dW0 is therefore E

(
D0

Mt

M0
| X0 = x

)
.

From the second equality in (19), these elasticities coincide with the diffusion counterpart to impulse

responses D0(logMt − logM0) for logMt − logM0 weighted by

(
Mt

M0

)

E
[(

Mt

M0

)
| X0 = x

]

when averaging over future outcomes. For the lognormal model, the weighting is inconsequential. In

Borovička et al. (2011), we provide details of this derivation and some related calculations including

the following alternative formula relavent for computation:

ε(x, t)
.
= ν(x) ·

[
σ(x)′

(
∂

∂x
logE

[(
Mt

M0

)
| X0 = x

])
+ α(x)

]
. (20)

The shock-elasticity formula (20) has a natural interpretation. The sensitivity of the multi-

plicative process M to a shock in the next instant consists of two terms. The term α (x) represents

the direct impact of the Brownian shock on the evolution of M in expression (18). The partial

derivative with respect to x capture the sensitivity of the conditional expectation to movements in

the state vector, and it is multiplied by the exposure matrix σ (x) to express the sensitivity with

respect to the shock vector W . The use of the derivative of the logarithm in (18) justifies the term

shock elasticity. The instantaneous short term elasticity is α(x) · ν(x).9

5 Discrete-time formulas and approximation

In the preceding sections, we developed formulas for shock-price and shock-exposure elasticities

for a wide class of models driven by a state vector with Markov dynamics (1). We now present a

tractable implementation that, when applicable, makes the computations straightforward to apply.

The discussion draws on methods developed in Borovička and Hansen (2014).10 We also provide

Matlab software implementing the solution methods described in this section including a toolkit

that computes shock elasticities for models solved using Dynare.11

We start by introducing a convenient exponential-quadratic framework that we use for modeling

the state vector X and the resulting multiplicative processes. In this framework, conditional expec-

tations of multiplicative processes and the shock elasticities are available in a convenient functional

form. We then consider a special class of approximate solutions to dynamic macroeconomic models

constructed using perturbation methods. We show how to approximate the equilibrium dynamics,

additive and multiplicative functionals, and the resulting shock elasticities. By construction, the

dynamics of these approximate solutions will be nested within the exponential-quadratic framework.

9The instantaneous shock-price elasticity is −αs(x) · ν(x) which coincides with the notion of a risk price vector
that represents the compensation for exposure to Brownian increments.

10See Nakamura et al. (2016) for another discrete-time implementation of these methods.
11Dynare is a freely available Matlab/Octave toolkit for solving and analyzing dynamic general equilibrium models.

See http://www.dynare.org. Our software is available at http://borovicka.org/software.html.
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5.1 Exponential-quadratic framework

We study dynamic systems for which the state vector can be partitioned as X = (X ′
1,X

′
2)

′ where

the two components follow the laws of motion:

X1,t+1 = Θ10 +Θ11X1,t + Λ10Wt+1

X2,t+1 = Θ20 +Θ21X1,t +Θ22X2,t +Θ23 (X1,t ⊗X1,t)

+Λ20Wt+1 + Λ21 (X1,t ⊗Wt+1) + Λ22 (Wt+1 ⊗Wt+1) . (21)

We restrict the matrices Θ11 and Θ22 to have stable eigenvalues. Notice that the restrictions

imposed by the triangular structure imply that the process X1 is linear, while the process X2 is

linear conditional on the evolution of X1.

The class of multiplicative functionalsM that interest us satisfies, for Y = logM , the restriction

Yt+1 − Yt = Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t) (22)

+Ψ0Wt+1 +Ψ1 (X1,t ⊗Wt+1) + Ψ2 (Wt+1 ⊗Wt+1) .

In what follows we use a 1 × k2 vector Ψ to construct a k × k symmetric matrix sym [matk,k (Ψ)]

such that12

w′ (sym [matk,k (Ψ)])w = Ψ(w ⊗ w) .

This representation will be valuable in some of the computations that follow. We use additive

functionals to represent stochastic growth via a technology shock process or aggregate consumption,

and to represent stochastic discounting used in representing asset values.

The system (21)–(22) is rich enough to accommodate stochastic volatility, which has been

featured in the asset pricing literature and to a lesser extent in the macroeconomics literature. For

instance, the state variable X1,t can capture a linear process for conditional volatility, and X2,t the

conditional growth rate of cash flows. The coefficient Ψ1 in (22) then determines the time-variation

in the conditional volatility of the growth rate of M , while Λ21 in (21) impacts the conditional

volatility of the changes in the growth rate. In Section 5.2, we will map the solution obtained using

perturbation approximations into this framework as well.

A virtue of parameterization (21)–(22) is that it gives quasi-analytical formulas for our dynamic

elasticities. The implied model of the stochastic discount factor has been used in a variety of

reduced-form asset pricing models. Later we will use an approximation to deduce this dynamical

system.

We illustrate the convenience of this functional form by calculating the logarithms of conditional

expectations of multiplicative functionals of the form (22). Consider a function that is linear-

12In this formula matk,k (Ψ) converts a vector into a k × k matrix and the sym operator transforms this square
matrix into a symmetric matrix by averaging the matrix and its transpose. Appendix A introduces convenient
notation for the algebra underlying the calculations in this and subsequent sections.
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quadratic in x = (x′1, x
′
2)

′:

log f(x) = Φ0 +Φ1x1 +Φ2x2 +Φ3 (x1 ⊗ x1) (23)

Then conditional expectations are of the form:

logE

[(
Mt+1

Mt

)
f(Xt+1) | Xt = x

]
= logE [exp (Yt+1 − Yt) f(Xt+1) | Xt = x]

= Φ∗
0 +Φ∗

1x1 +Φ∗
2x2 +Φ∗

3 (x1 ⊗ x1)

= log f∗(x) (24)

where the formulas for Φ∗
i , i = 0, . . . , 3 are given in Appendix A. This calculation maps a function

f into another function f∗ with the same functional form. Our multi-period calculations exploit

this link. For instance, repeating these calculations compounds stochastic growth or discounting.

Moreover, we may exploit the recursive Markov construction in (24) initiated with f(x) = 1 to

obtain:

logE

[(
Mt

M0

)
| X0 = x

]
= Φ∗

0,t +Φ∗
1,tx1 +Φ∗

2,tx2 +Φ∗
3,t (x1 ⊗ x1)

for appropriate choices of Φ∗
i,t.

5.1.1 Shock elasticities

To compute shock elasticities given in (8) under the convenient functional form, we construct:

E
[(

Mt

M0

)
W1 | X0 = x

]

E
[(

Mt

M0

)
| X0 = x

] =
E
[(

M1

M0

)
E
[(

Mt

M1

)
| X1

]
W1 | X0 = x

]

E
[(

M1

M0

)
E
(

Mt

M1
| X1

)
| X0 = x

] .

Notice that the random variable:

L1,t =

(
M1

M0

)
E
(

Mt

M1
| X1

)

E
[(

M1

M0

)(
Mt

M1
| X1

)
| X0 = x

] (25)

has conditional expectation one. Multiplying this positive random variable by W1 and taking

expectations is equivalent to changing the conditional probability distribution and evaluating the

conditional expectation of W1 under this change of measure. Then under the transformed measure,

using a complete-the-squares argument we may show that W1 remains normally distributed with

a covariance matrix that is no longer the identity and a mean conditioned on X0 = x that is

affine in x1. The formulas are given in Appendix B. Thus the shock elasticity function ε (x, t)

can be computed recursively using formulas that are straightforward to implement. We show in

Appendix B that the resulting shock elasticity function is also affine in the state x1.
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5.2 Perturbation methods

In macroeconomic models, the equilibrium Markov dynamics (1) is typically ex-ante unknown and

needs to be solved for from a set of equilibrium conditions. We now describe a solution method

for dynamic general equilibrium models that yields a solution in the form of an approximate law of

motion that is a special case of the exponential-quadratic functional form analyzed in Section 5.1.

This solution method, based on Holmes (1995) and Lombardo and Uhlig (2014), constructs a

perturbation approximation where the first- and second-order terms follow the restricted dynamics

(21).

For the purposes of approximation, we consider a family of models parameterized by q and

study first- and second-order approximations around this limit system in which q = 0. For each q,

we consider the system (equations

0 = E (g [Xt+1 (q) ,Xt (q) ,Xt−1 (q) , qWt+1, qWt, q] | Ft) . (26)

The q = 0 equation system is one without shocks, and more generally small values q will make the

shocks less consequential. There are well-known saddle-point stability conditions on the system

(26) that lead to a unique equilibrium of the linear approximation (see Blanchard and Kahn (1980)

or Sims (2002)) and we assume that these are satisfied. Following Holmes (1995) and Lombardo

and Uhlig (2014), we form an approximating system by deducing the dynamic evolution for the

pathwise derivatives with respect to q and evaluated at q = 0. Our derivation will be admittedly

heuristic as is much of the related literature in macroeconomics.

To build a link to the parametrization in Section 5.1, we feature a second-order expansion:

Xt (q) ≈ X0,t + qX1,t +
q2

2
X2,t.

where Xm,t is the m-th order, date t component of the stochastic process. We abstract from

the dependence on initial conditions by restricting each component process to be stationary. Our

approximating process will similarly be stationary.13 The expansion leads to laws of motion for the

component processes X1,· and X2,·. The joint process (X1,·,X2,·) will again be Markov, although

the dimension of the state vector under the approximate dynamics doubles.

5.2.1 Approximating state vector dynamics

While Xt (q) serves as a state vector in the dynamic system (26), the state vector itself depends

on the parameter q. Suppose that Ft is the σ-algebra generated by the infinite history of shocks

{Wj : j ≤ t}. For each dynamic system, we presume that the state vector Xt (q) is Ft measurable

and that in forecasting future values of the state vector conditioned on Ft it suffices to condition

on Xt. Although Xt (q) depends on q, the construction of Ft does not. We now construct the

13As argued by Lombardo and Uhlig (2014), this approach is computationally very similar to the pruning approach
described by Kim et al. (2008) or Andreasen et al. (2010).
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dynamics for each of the component processes. The result will be a recursive system that has the

same structure as the triangular system (21).

Define x̄ to be the solution to the equation:

x̄ = ψ(x̄, 0, 0),

which gives the fixed point for the deterministic dynamic system. We assume that this fixed point

is locally stable. That is ψx(x̄, 0, 0) is a matrix with stable eigenvalues, eigenvalues with absolute

values that are strictly less than one. Then set

X0,t = x̄

for all t. This is the zeroth-order contribution to the solution constructed to be time-invariant.

In computing pathwise derivatives, we consider the state vector process viewed as a function

of the shock history. Each shock in this history is scaled by the parameter q, which results in a

parameterized family of stochastic processes. We compute derivatives with respect to this param-

eter where the derivatives themselves are stochastic processes. Given the Markov representation

of the family of stochastic processes, the derivative processes will also have convenient recursive

representations. In what follows we derive these representations.

Using the Markov representation, we compute the derivative of the state vector process with

respect to q, which we evaluate at q = 0. This derivative has the recursive representation:

X1,t+1 = ψq + ψxX1,t + ψwWt+1

where ψq, ψx and ψw are the partial derivative matrices:

ψq
.
=
∂ψ

∂q
(x̄, 0, 0), ψx

.
=
∂ψ

∂x′
(x̄, 0, 0), ψw

.
=

∂ψ

∂w′
(x̄, 0, 0).

In particular, the term ψwWt+1 reveals the role of the shock vector in this recursive representation.

Recall that we have presumed that x̄ has been chosen so that ψx has stable eigenvalues. Thus

the first derivative evolves as a Gaussian vector autoregression. It can be expressed as an infinite

moving average of the history of shocks, which restricts the process to be stationary. The first-order

approximation to the original process is:

Xt ≈ x̄+ qX1,t.

In particular, the approximating process on the right-hand side has x̄ + q(I − ψx)
−1ψq as its

unconditional mean.

We compute the pathwise second derivative with respect to q recursively by differentiating

the recursion for the first derivative. As a consequence, the second derivative has the recursive
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representation:

X2,t+1 = ψqq + 2 (ψxqX1,t + ψwqWt+1) + (27)

+ψxX2,t + ψxx (X1,t ⊗X1,t) + 2ψxw (X1,t ⊗Wt+1) + ψww (Wt+1 ⊗Wt+1)

where matrices ψij denote the second-order derivatives of ψ evaluated at (x̄, 0, 0) and formed using

the construction of the derivative matrices described in Appendix A.2. As noted by Schmitt-Grohé

and Uribe (2004), the mixed second-order derivatives ψxq and ψwq are often zero using second-order

refinements to the familiar log approximation methods.

The second-derivative process X2,· evolves as a stable recursion that feeds back on itself and

depends on the first derivative process. We have already argued that the first derivative processX1,t

can be constructed as a linear function of the infinite history of the shocks. Since the matrix ψx has

stable eigenvalues, X2,t can be expressed as a linear-quadratic function of this same shock history.

Since there are no feedback effects from X2,t to X1,t+1, the joint process (X1,·,X2,·) constructed in

this manner is necessarily stationary.

The dynamic evolution for (X1,·,X2,·) is a special case of the the triangular system (21) given

in Section 5.1. When the shock vector Wt is a multivariate standard normal, we can utilize results

from Section 5.1 to produce exact formulas for conditional expectations of exponentials of linear-

quadratic functions in (X1,t,X2,t). We exploit this construction in the subsequent subsection. For

details on the derivation of the approximating formulas see Appendix A.

5.3 Approximating the evolution of a stationary increment process

Consider the approximation of a parameterized family of multiplicative processes with increments

given by:

logMt+1(q)− logMt(q) = κ[Xt(q), qWt+1, q]

and an initial condition logM0. We use the function κ in conjunction with q to parameterize

implicitly a family of additive functionals. We approximate the resulting additive functionals by

logMt ≈ logM0,t + q logM1,t +
q2

2
logM2,t

where the processes on the right-hand side have stationary increments.

Following the steps of our approximation of X, the recursive representation of the zeroth-order

contribution to Y is

logM0,t+1 − logM0,t = κ(x̄, 0, 0)
.
= κ̄;

the first-order contribution is

logM1,t+1 − logM1,t = κq + κxX1,t + κwWt+1

where κx and κw are the respective first derivatives of κ evaluated at (x̄, 0, 0); and the second-order
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contribution is

logM2,t+1 − logM2,t = κqq + 2 (κxqX1,t + κwqWt+1) +

+κxX2,t + κxx (X1,t ⊗X1,t) + 2κxw (X1,t ⊗Wt+1) + κww (Wt+1 ⊗Wt+1)

where the κij’s are the second derivative matrices constructed as in Appendix A.2. The resulting

component additive functionals are special cases of the additive functional given in (22) that we

introduced in Section 5.1.

5.3.1 Approximating shock elasticities

We could compute corresponding second-order approximations for the elasticities of multiplicative

processes. Alternatively, since the approximating processes satisfy the structure given in section

5.1, we have the formulas that we described earlier at our disposal and the supporting software.

See Borovička and Hansen (2014) for further discussion.

5.4 Related approaches

There also exist ad-hoc approaches which mix orders of approximation for different components of

the model or state vector. The aim of these methods is to improve the precision of the approxi-

mation along specific dimensions of interest, while retaining tractability in the computation of the

derivatives of the function ψ. Justiniano and Primiceri (2008) use a first-order approximations but

augment the solution with heteroskedastic innovations. Benigno et al. (2010) study second-order

approximations for the endogenous state variables in which exogenous state variables follow a condi-

tionally linear Markov process. Malkhozov and Shamloo (2011) combine a first-order perturbation

with heteroskedasticity in the shocks to the exogenous process and corrections for the variance

of future shocks. These solution methods are designed to produce nontrivial roles for stochastic

volatility in the solution of the model and in the pricing of exposure to risk. The approach of

Benigno et al. (2010) or Malkhozov and Shamloo (2011) give alternative ways to construct the

functional form used in Section 5.1.

5.5 Recursive utility investors

The recursive utility preference specification of Kreps and Porteus (1978), Epstein and Zin (1989)

warrant special consideration. By design, this specification of preferences avoids presuming that

investors reduce intertemporal, compound consumption lotteries. Instead investors may care about

the intertemporal composition of risk. It is motivated in part by an aim to allow for risk aversion

to be altered without changing the elasticity of intertemporal substitution. Anderson et al. (2003),

Maenhout (2004) and others extend the literature on risk-sensitive control by Jacobson (1973),

Whittle (1990) and others and provide a “concern for robustness” interpretation of the utility

recursion. Under this alternative interpretation the decision maker explores the potential misspec-

ification of the transition dynamics as part of the decision-making process. This perspective yields
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a substantially different interpretation of the utility recursion. In establishing these connections

in the control theory and economics literatures, it is sometimes advantageous to parameterize the

utility recursion in a manner that depends explicitly on the parameter q. Borovička and Hansen

(2013) and Bhandari et al. (2016) explore the resulting implications for approximations analogous

to those studied here. Among other things, they provide a rationale for the first-order adjust-

ments for recursive utility as suggested by Tallarini (2000), and they show novel ways in which

higher-order adjustments are more impactful.

6 Continuous-time approximation

Many interesting macroeconomic models specified in continuous time, including those we analyze

in Section 7, require the application of numerical solution techniques. In the construction of shock

elasticities, the central object of interest is the conditional expectation of M in (19). Consider the

more general problem

φt (x)
.
= E

[(
Mt

M0

)
φ0 (Xt) | X0 = x

]
. (28)

with a given function φ0. The conditional expectation of M is obtained by setting φ0 (x) ≡ 1.

6.1 An associated partial differential equation

For the purposes of computation, we evaluate φt recursively. Given φt−∆t for small ∆t, exploit-

ing the time homogeneity of the underlying Markov process and applying the Law of Iterated

Expectations gives:

φt (x) = E

[(
M∆t

M0

)
φt−∆t (X∆t) | X0 = x

]

Itô’s lemma applied to the product in the conditional expectation gives the linear, second-order

partial differential equation:

∂

∂t
φt =

(
β +

1

2
|α (x)|2

)
φt +

[
∂

∂x
φt

]
· (µ+ σα ) + (29)

+
1

2
tr

[
σ′

(
∂

∂x∂x′
φt

)
σ

]

with terminal condition φ0 where tr(·) denotes the trace of the matrix argument. Equation (29)

is a generalization of the Kolmogorov backward equation for multiplicative processes of the type

(17). The resulting partial differential equation can be solved using standard numerical techniques

for differential equations.

6.2 Martingale decomposition and a change of measure

To study the long-run implications for pricing, we proposed the extraction of a martingale compo-

nent from the dynamics of the stochastic discount factors and cash flows by solving the Perron–

Frobenius equation (9) for the strictly positive eigenfunction e (x) and the associated eigenvalue η .
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In the Markov diffusion setup we localize this problem by computing

lim
t→0

E [Mte(Xt)| X0 = x]− exp(ηt)e(x)

t
= 0.

Defining the infinitesimal operator

Bf(x)
.
=

d

dt
E [Mtf(Xt)| X0 = x]

∣∣∣∣
t=0

we have

Bf =

(
β +

1

2
|α|2

)
f + (σα+ µ) ·

∂f

∂x
+

1

2
tr

(
σσ′

∂2f

∂x∂x′

)

and we can write the limiting Perron–Frobenius equation as

Be = ηe (30)

which is a second-order partial differential equation for the function e (x) and a number η. Equa-

tion (30) is known as the Sturm–Liouville equation. Notice that it is identical to the partial

differential equation (29) when we are looking for an unknown discounted stationary function

φt (x) = exp (ηt) e (x) with initial condition φ0 (x) = e (x). As before, there are typically multiple

strictly positive solutions to this equation. Hansen and Scheinkman (2009) show that there is at

most one such solution that preserves stochastic stability of the state vector X. We implicitly

assume that we always choose such a solution.14

In line with the discussion from Section 3.4, we can now define the martingale M̃ as15

M̃t

M̃0

.
= exp (−ηt)

e (Xt)

e (X0)

Mt

M0
. (31)

Applying Itô’s lemma, we find that

d log M̃t = α̃ (Xt) · dWt −
1

2
|α̃ (Xt)| dt

with

α̃ (x) =

[
σ′ (x)

∂

∂x
log e (x) + α (x)

]
.

This implies that under the probability measure P̃ , the Brownian motion evolves as

dWt = α̃ (x) dt+ dW̃t

14See also Borovička et al. (2015), Qin and Linetsky (2014a), Qin et al. (2016), Walden (2014) or Park (2015) for
problems closely related to solving for the eigenvalue-eigenfunction pair (η, e).

15 We note that the solution obtained using the localized version of the Perron–Frobenius problem may yield a
process M̃ that is only a local martingale. See Hansen and Scheinkman (2009) and Qin and Linetsky (2014b) for

details and additional assumptions that assure M̃ is a martingale. We will assume that such conditions are satisfied
in the discussion that follows.
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where W̃ is a Brownian motion under P̃ . It also implies that we can write the dynamics of the

state vector under the change of measure as

dXt = [µ (Xt) + σ (Xt) α̃ (Xt)] dt+ σ (Xt) dW̃t.

Inverting equation (31), we obtain the analog of the martingale decomposition in discrete time:

Mt

M0
= exp (ηt)

e (X0)

e (Xt)

M̃t

M̃0

. (32)

To implement the factorization of the multiplicative functionalM , we compute the strictly pos-

itive eigenfunction e (x) and the associated eigenvalue η by solving the Perron–Frobenius problem

(30). Since analytical solutions are often not available, we must rely on numerical methods. Pryce

(1993) gives various numerical solution techniques for this problem. Notice that since there are

typically infinitely many strictly positive solutions e (x), it is necessary determine which of these

solutions is the relevant one.

An alternative approach is to utilize the time-dependent PDE (29) and exploit the fact that η

is the principal eigenvalue, i.e., one associated with the most durable component. In that case, one

can start with an initial condition φ0 (x) that serves as a guess for the eigenfunction, and iterate

on (29) to solve for φt (x) as t→ ∞. For large t, the solution should behave as

φt (x) ≈ exp (ηt) e (x)

and thus

η =
∂

∂t
log φt (x)

∣∣∣∣
t→∞

≈
1

∆t
[log φt+∆t (x)− log φt (x)]

∣∣∣∣
t→∞

and since the eigenfunction is only determined up to scale, we can use any proportional rescaling

of φt as e (x) ≈ exp(−ηt)φt (x)|t→∞.

6.3 Long-term pricing

We now apply the decomposition (32) in the shock elasticity formula (19) to obtain:

ε(x, t)
.
= ν(x) ·

[
σ(x)′

(
∂

∂x
log e (x) +

∂

∂x
log Ẽ

[
1

e (Xt)
| X0 = x

])
+ α(x)

]
.

Taking the limit as t→ ∞, the conditional expectation in brackets converges to a constant provided

that we select a martingale that induces a probability measure under which X is stochastically

stable. See Hansen and Scheinkman (2009) and Hansen (2012) for further discussion. Therefore,

lim
t→∞

ε (x, t) = ν (x) ·

[
σ(x)′

∂

∂x
log e (x) + α(x)

]
.
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6.4 Boundary conditions

The construction of shock elasticity functions requires solving the conditional expectations ofM , for

instance, by solving the partial differential equation (29). This requires proper specification of the

boundary conditions not only in terms of the terminal condition φ0 (x) but also at the boundaries

of the state space for the state vector Xt. The boundary behavior of the diffusion X is a central

and often economically important part of the equilbrium, as we will see in the models with financial

frictions discussed in Section 7. In those models, the state variable is a univariate diffusion and

there are well understood characterizations of the boundary behavior based on the classical Feller

boundary classification.16 The textbook treatment of the boundary conditions for problem (28)

typically abstracts from the impact of the multiplicative process M . While a detailed discussion

of the boundary characterization is beyond the scope of this chapter, we briefly discuss how the

inclusion of M can alter the analysis. In what follows, we utilize the martingale decomposition

introduced in Section 3.4 and draw connections to the treatment of boundaries for scalar diffusions.

We represent the conditional expectation (32) using a Kolmogorov equation under the change

of measure induced by M̃ . Using the martingale factorization (32) we write (28) as

φt (x)
.
= E

[
exp (ηt)

e (X0)

e (Xt)

M̃t

M̃0

φ0 (Xt) | X0 = x

]
.

Define

ψt (x)
.
= exp (−ηt)

φt (x)

e (x)
= Ẽ

[
φ0 (Xt)

e (Xt)
| X0 = x

]
= Ẽ [ψ0 (Xt) | X0 = x] (33)

with the initial condition ψ0 (x) = φ0 (x) /e (x). This converts the boundary condition problem

into a standard Kolmogorov backward equation (equation (28) with M ≡ 1), albeit under the

probability measure P̃ . Under P̃ , the diffusion X satisfies the law of motion

dXt = µ̃ (Xt) dt+ σ (Xt) dW̃t.

µ̃ (x) = µ (x) + σ (x) σ′ (x)
∂

∂x
log e (x) + σ (x)α (x)

and the associated generator

B̃f = µ̃ ·
∂f

∂x
+

1

2
tr

(
σσ′

∂2f

∂x∂x′

)

corresponds to the generator of a diffusion with infinitesimal variance σ2 (x) and infinitesimal mean

µ̃ (x) under P̃ .

The boundary characterization under P̃ and the associated boundary conditions for ψt (x) follow

from formulas from Section 6.4. The character of the boundary can change under P̃ , although a

reflecting boundary remains reflecting to preserve local equivalence of measures P and P̃ . Observe

16See the seminal work by Feller (1952, 1957). Karlin and Taylor (1981), Borodin and Salminen (2002) or Linetsky
(2008) offer summarizing treatments.
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that equation (33) introduces a relationship between the conditional expectation given by φt(x)

and the eigenfunction e(x). For instance, when the boundary point xb is reflecting, the appropriate

boundary condition is17

∂

∂x
ψt (x)

∣∣∣∣
x=xb

= 0.

When both φt(x) and e(x) are strictly positive at the boundary, this implies that

∂

∂x
log φt (x)

∣∣∣∣
x=xb

=
∂

∂x
log e (x)

∣∣∣∣
x=xb

equalizing logarithmic slopes of the conditional expectation (28) and the eigenfunction e(x) at the

boundary.

7 Models with financial constraints in continuous time

Recently, there has been renewed interest in nonlinear stochastic macroeconomic models with fi-

nancing restrictions. The literature was initiated by Bernanke and Gertler (1989) and Bernanke

et al. (1999), and it has been revived and extended since the advent the financial crisis. Continuous-

time models have been featured in He and Krishnamurthy (2013), Brunnermeier and Sannikov

(2014), Di Tella (2015), Moreira and Savov (2016), Adrian and Boyarchenko (2012), or Klimenko

et al. (2016). Differential equation methods give the equilibrium solutions, and the resulting dynam-

ics exhibit quantitatively substantial nonlinearity. The nonlinearity emerges because of financing

constraints that bind only in a specific part of the state space.18

To preserve tractability, models typically assume a low-dimensional specification of the state

space. In this section, we analyze two such models, He and Krishnamurthy (2013) and Brunnermeier

and Sannikov (2014). Both models utilize frameworks that are judiciously chosen to lead to a scalar

endogenous state variable that follows the diffusion

dXt = µ (Xt) dt+ σ (Xt) dWt. (34)

The endogenous state represents the allocation of wealth between households and financial experts,

capturing the capitalization of the financial sector relative to the size of the economy. When the

capitalization is low, the financial constraint is binding, and asset valuations are more sensitive to

aggregate shocks.

Both papers also feature an exogenous process that introduces aggregate risk into their model

economies. He and Krishnamurthy (2013) construct an endowment economy with a permanent

shock to the aggregate dividend. On the other hand, Brunnermeier and Sannikov (2014) feature

endogenous capital accumulation with a a shock to the quality of the capital stock. In this section,

we utilize the continuous-time tools developed in Section 6 to study the state-dependence in asset

17This assumes that the so called scale measure is finite at the boundary, see, e.g., Borodin and Salminen (2002).
18See Bocola (2016) or Bianchi (2016) for discrete-time models solved using global to account for financing constraint

that binds only occasionally.
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pricing implications of the two models. We refer the reader to the respective papers for a detailed

discussions of the underlying economic environments.

7.1 Stochastic discount factors

Stochastic discount factors and priced cash flows in the models we analyze can be written as special

cases of multiplicative functionals introduced in Section 4.2:

d log St = β (Xt) dt+ α (Xt) · dWt. (35)

with coefficients β(x) and α(x) determined in equilibrium. In an arbitrage-free, complete market

environment, there exists a unique stochastic discount factor that represents the prices of the traded

securities.

In economies with financial market imperfections and constraints, this ceases to be true. There

are two key features that are of interest to us. First, financial markets in these economies are

segmented, and different investors can own specific subsets of assets. This implies the existence of

alternative stochastic discount factors for individual investors that have to agree only on prices of

assets traded between investors. Second, assets are valuable not only for their cash flows but also

because their ownership can relax or tighten financing constraints faced by individual investors.

Given the potential for these constraints to be binding, asset values include contributions from the

shadow prices of these constraints.

7.2 He and Krishnamurthy (2013)

He and Krishnamurthy (2013) construct an economy populated by two types of agents, specialists

and households. There are two assets in the economy, a safe asset earning an infinitesimal risk-free

rate rt and a risky asset with return Rt that is a claim on aggregate dividend

d logDt =

(
gd −

1

2
σ2d

)
dt+ σddWt

.
= β̄ddt+ ᾱddWt. (36)

7.2.1 Households and specialists

Households have logarithmic preferences and therefore consume a constant fraction of their wealth,

Ch
t = ρAh

t , where ρ is the time-preference coefficient. A fraction λ of households can only invest

into the safe asset, while a fraction 1 − λ invests a share αh
t of their wealth through an interme-

diary managed by the specialists who holds a portfolio with return dR̃t. Aggregate wealth of the

households therefore evolves as

dAh
t =

(
ℓDt − ρAh

t

)
dt+Ah

t rtdt+ αh
t (1− λ)Ah

t

(
dR̃t − rtdt

)
.

where ℓDt is households’ income, modeled as a constant share ℓ of the dividend.
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Specialists are endowed with CRRA preferences over their consumption stream Ct with risk

aversion coefficient γ and trade both assets. Their stochastic discount factor is

St
S0

= e−ρt

(
Ct

C0

)−γ

. (37)

This stochastic discount factor also prices all assets traded by specialists. The law of motion for

their wealth is given by

dAt = −Ctdt+Atrtdt+At

(
dR̃t − rtdt

)
.

The intermediary combines all wealth of the specialists At with the households’ wealth invested

through the intermediary αh
t (1− λ)Ah

t and invests a share αt of the combined portfolio into the

risky asset. The return on the intermediary portfolio then follows

dR̃t = rtdt+ αt (dRt − rtdt) .

The risky asset market clears, so that the wealth invested into the risky asset equals the market

price of the asset, Pt

αt

(
At + αh

t (1− λ)Ah
t

)
= Pt.

7.2.2 Financial friction

The critical financial friction is introduced into the portfolio choice of the household. Motivated

by a moral hazard problem, the household is not willing to invest more than a fraction m of the

specialists’ wealth through the intermediary, which defines the intermediation constraint

αh
t (1− λ)Ah

t ≤ mAt. (38)

Because of logarithmic preferences, the portfolio choice αh
t of the household is static. The household

is also not allowed to sell short any of the assets, so that it solves

max
αh
t ∈[0,1]

αh
t E

[
dR̃t − rtdt | Ft

]
−

1

2

(
αh
t

)2
V ar

[
dR̃t − rtdt | Ft

]

subject to the intermediation constraint (38).

The parameter m determines the tightness of the intermediation constraint. This constraint

will be endogenously binding when the wealth of the specialists becomes sufficiently low relative to

the wealth of the household. In that case, risk sharing partially breaks down and the specialists will

have to absorb a large share of the risky asset in their portfolio. As an equilibrium outcome, risk

premia increase and the wealth of the specialists becomes more volatile, which in turn induces larger

fluctuations of the right-hand side of the constraint (38). Without the intermediation constraint,

the model reduces to an endowment economy populated by agents solving a risk-sharing problem

with portfolio constraints.
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7.2.3 Equilibrium dynamics

The equilibrium in this model is conveniently characterized using the wealth share of the specialists,

Xt
.
= At/Pt ∈ (0, 1), that will play the role of the single state variable with endogenously determined

dynamics (34) where the coefficients µ (x) and σ (x) are given by the relative wealth accumulation

rates of households and specialists, and the equilibrium price of the claim on the risky cash flow.

He and Krishnamurthy (2013) show that both boundaries {0, 1} are entrance boundaries.

Given the homogeneity in the model, we can write the consumption of the specialists as

Ct = Dt (1 + ℓ)− Ch
t = Dt

[
(1 + ℓ)−

Ch
t

Ah
t

Ah
t

Pt

Pt

Dt

]

= Dt [(1 + ℓ)− ρ (1−Xt)π (Xt)]

where π (x) is the price-dividend ratio for the claim on the dividend stream. The price-dividend

ratio is determined endogenously as part of the solution to a set of differential equations. Given a

solution for the price-dividend ratio π (x), we construct the stochastic discount factor (37).

The top row of Figure 1 shows the drift and volatility coefficients of the state variable process

X, and the associated stationary density. When the specialists’ wealth share Xt is low (below

x∗ = 0.091), the intermediation constraint binds. As Xt → 0, the intermediation capacity of the

specialists decreases, which increases the expected return on the risky asset, thereby increasing the

rate of wealth accumulation of the specialists. On the other hand, when Xt → 1, the economy is

unconstrained, risk premia are low, and situation reverses. The drift coefficient µ (x) in the top left

panel reflects these effects.

In the moment when the constraints start binding (to the left of the point x∗ = 0.091), volatility

σ(x) of the experts’ wealth share starts rising. Ultimately, this volatility has to decline to zero as

Xt → 0 to prevent the experts’ wealth share from hitting the zero boundary with a positive

probability, but the volatility of experts’ wealth level keeps rising as we approach the boundary.

7.2.4 Stochastic discount factor and cash flows

Aggregate dividendDt in (36) follows a geometric Brownian motion with drift. This directly implies

a constant shock-exposure elasticity

εd (x, t) = σd.

Time-variation in expected returns on the claim on the aggregate dividend thus must come solely

from the time-variation in prices of risk. In particular, the consumption process of specialists is:

Ct

C0
=

(
Dt

D0

)[
(1 + ℓ)− ρ (1−Xt)π (Xt)

(1 + ℓ)− ρ (1−X0)π (X0)

]
. (39)

Notice that the consumption of specialists has the same long-term stochastic growth as the aggregate

dividend process. Since the dividend process D is a geometric Brownian motion, we immediately
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Figure 1: Dynamics of the experts’ wealth share Xt = At/Pt (horizontal axis), shock-exposure and
shock-price elasticities for the He and Krishnamurthy (2013) model. Top left panel shows the drift
and volatility coefficients for the evolution of Xt, while top right panel the stationary density for
Xt. Panels in the bottom row show the short- and long-horizon shock elasticity for the experts’
consumption process Ct. The intermediation constraint (38) binds in the interval Xt ∈ (0, 0.091),
and x∗ = 0.091 corresponds to the 35.3% quantile of the stationary distribution of Xt.

obtain the martingale factorization of C with

ec (x) = [(1 + ℓ)− ρ (1− x)π (x)]−1

ηc = gd

C̃t = exp (−ηct)Dt

where C̃ is the martingale component of C. Analogously, the stochastic discount factor of the

specialists (37) is decomposed as

es (x) = [(1 + ℓ)− ρ (1− x)π (x)]γ

ηs = −ρ− γgd +
1

2
σ2dγ (γ + 1)

S̃t = exp [(−ηs − ρ) t] (Dt)
−γ
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Figure 2: Shock-exposure and shock-price elasticities for the He and Krishnamurthy (2013) model.
Individual lines correspond to alternative choices of the current state, the experts’ wealth share
X0 = x. The blue solid line represents the state in which the intermediation constraint (38) starts
binding (x = 0.091, corresponding to the 35.3% quantile of the stationary distribution of Xt. The
red dashed line corresponds to the 5% quantile of the stationary distribution of Xt (intermediation
constraint tightly binding) while the red dotted line corresponds to the 95% quantile.

where S̃ is the martingale component.

These factorization results indicate a simple form for the long-horizon limits of the shock elas-

ticities. The consumption and dividend processes share the same martingale component, and thus,

assuming ν (x) = 1, their shock-exposure elasticities imply

lim
t→∞

εc (x, t) = lim
t→∞

εd (x, t) = σd.

Similarly, the shock-price elasticities for the two cash-flow processes have the common long-horizon

limit

lim
t→∞

εp (x, t) = γσd.

As we have just verified, the intermediation constraint does not have any impact on prices of

long-horizon cash flows. Long-horizon shock elasticities behave as in an economy populated only

by unconstrained specialists with risk aversion γ who consume the whole dividend stream Dt. The

intermediation constraint only affects the stationary part es (x) of the stochastic discount factor.19

As a consequence, long-term risk adjustments in this model are the same as those implied by a

model with power utility function and consumption equal to dividends. The financing constraint

induces deviations in short-term risk prices, which we now characterize.
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Figure 3: Yields and excess yields for the He and Krishnamurthy (2013) model. Parametrization
and description as in Figure 2.

7.2.5 Shock elasticities and term structure of yields

The blue solid lines in the bottom row of Figure 1 represent the long-horizon shock-exposure and

shock-price elasticities. These results are contrasted with the infinitesimal shock-exposure and

shock-price elasticities, depicted with red dashed lines, that are equal to the volatility coefficients

αc (x) and αs (x) in the differential representation (35) for the experts’ consumption process (39)

and stochastic discount factor process (37), respectively.

Figure 2 depicts these shock elasticities evaluated at three different points in the state space.

These elasticities were computed numerically.20 A remarkable feature of the model is the following.

The short-horizon consumption cash flows are more exposed to risk as revealed by a larger shock-

price elasticity in the constrained region of the state space (x = 0.05). This finding is reversed

for long-horizon cash flows, showing that the term structure of risk prices is much more strongly

downward sloping for low values of the state variable. Since the state variable responds positively

19Without the intermediation constraint and the debt constraint (λ = 0), the economy reduces to a complete-market
risk-sharing problem between households and specialists and will converge in the long-run to a homogeneous-agent
economy populated only by households when γ > 1.

20We solved equation (29) for M = C and M = SC, with φ0(x) = 1 using an implicit finite difference scheme. We
used the solution for π(x) constructed using the code from He and Krishnamurthy (2013).
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to shocks, low realizations of the state variable are the consequence of adverse shocks in the past.

Figure 3 explores the implications for yields on dividends and experts’ consumptions for alter-

native payoff horizons computed as logarithms of expected returns to the respective payoffs. While

the yields on dividends and experts’ consumption are initially increasing in maturity, this is all the

more so when x is low. The yields are monotone over all horizons except when x is low, in which

case the yields eventually decline a bit. The same effect is even more pronounced for the risk-free

yield curve except the eventual decline is even more slight. Excess yields are therefore downward

sloping for the experts’ consumption process, and are lower for longer maturities for low values of

x in contrast to high values.21

7.3 Brunnermeier and Sannikov (2014)

Brunnermeier and Sannikov (2014) construct a model with endogenous capital accumulation, popu-

lated by two types of agents, households and experts. The experts have access to a more productive

technology for output and new capital than the households. The state variable of interest is the

wealth share of experts, defined as

Xt =
Nt

QtKt

where Nt is the net worth of the experts, and QtKt is the market value of capital. The equilibrium

stock of capital evolves as

d logKt = βk (Xt) dt+ ᾱkdWt

where the rate of accumulation of aggregate capital, βk (Xt), is determined by the wealth share of

experts along with a standard local lognormal adjustment. The shock dWt alters the quality of the

capital stock.

7.3.1 Households and experts

In the baseline model, both households and experts have linear preferences and differ in their time-

preference coefficients, r and ρ, respectively, assuming that ρ > r. In particular, the preferences

for experts are given by

E

[∫ ∞

0
e−ρtdCut | F0

]

where Cut is cumulative consumption and as such is restricted to be a non-decreasing process. In

contrast, the cumulative consumption of the household can have negative increments. The linearity

in their preferences implies a constant equilibrium rate of interest r.

21For empirical evidence and modeling of the downward sloping term structure of risky yields see van Binsbergen
et al. (2012), van Binsbergen et al. (2013), Ai et al. (2013), Belo et al. (2015), Hasler and Marfè (2015), Lopez et al.
(2015), or van Binsbergen and Koijen (2016).
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7.3.2 Financial friction

In the model, experts are better at managing the capital stock, making it more productive. This

creates a natural tendency to move the capital from the hands of the households to the hands of the

experts, who in turn issue financial claims on this capital to the households. Absent any financial

frictions, the experts would instantly consume the total value of their own net worth (given their

higher impatience and linear utility), and accept households’ capital under management by issuing

equity claims.

Brunnermeier and Sannikov (2014) assume that experts cannot issue any equity and have to

finance all capital purchases using risk-free borrowing. This naturally creates a leveraged portfolio

on the side of the experts. When the wealth share of experts Xt decreases, they can intermediate

households’ capital only by increasing their leverage, and the price of capital Q (Xt) has to fall in

order to generate a sufficiently high expected return on capital for the experts to hold this leveraged

portfolio.

7.3.3 Equilibrium dynamics

In equilibrium, the expected return on capital has to balance the hedging demand on the side of the

experts with the supply of capital from households. Experts’ hedging motive (limited willingness

to hold a leveraged portfolio) arises from the fact that a leveraged portfolio generates a low return

after an adverse realization of the shock dWt which, at the same time, decreases Xt and therefore

increases the future expected return on capital.

On the other hand, when the wealth share of experts Xt increases, the price of capital Q (Xt)

increases, and the expected return falls. Define the marginal value of experts’ wealth Θt = θ (Xt)

through

ΘtNt = E

[∫ ∞

t

e−ρ(s−t)dCs | Ft

]

where dC is the cumulative consumption process of the experts. Linearity of preferences implies

that experts’ consumption is zero as long as Θt > 1. As Xt increases, it reaches an endogenously

determined threshold x̄ for which θ (x̄) = 1. At this point, the marginal utility of wealth equals

the marginal utility of consumption, and experts consume out of their wealth. Consequently, the

equilibrium dynamics for the wealth share of experts is given by

dXt = µ (Xt) dt+ σ (Xt) dWt −Xtdζt.

where µ (x) and σ (x) are endogenously determined coefficients that depend on relative rates of

wealth accumulation of experts and households, and the consumption rate of experts dζt
.
= dCt/Nt >

0 only if Xt = x̄. Formally, the right boundary for the stochastic process Xt behaves as a reflecting

boundary. See Brunnermeier and Sannikov (2014) for the construction of µ and σ.

39



7.3.4 Stochastic discount factor and cash flows

We now turn to the study of asset pricing implications in the model. To construct the shock

elasticities, we construct the coefficients β(x) and α(x) for the evolution of the stochastic discount

factor and priced cash flows modeled as multiplicative functionals (35).

The marginal utility of wealth implies the following stochastic discount factor of the experts:

St
S0

= exp(−ρt)
θ (Xt)

θ (X0)
.

The coefficients βs(x) and αs(x) in the equation for the evolution of the stochastic discount factor

functional can be constructed by applying Ito’s lemma to this expression taking account of the

functional dependence given by θ(x) and the evolution of X. Observe that this stochastic discount

factor does not contain a martingale component. Nevertheless, since the equilibrium local risk-free

interest rate is r,

exp(rt)
St
S0

= exp [(r − ρ)t]
θ (Xt)

θ (X0)
,

must be a positive local martingale. As such, its expectation conditioned on date t information

could decline in t implying that long-term interest rates could be higher and in fact converge to

ρ. More generally, from the standpoint of valuation, the fat right tail of the process θ(Xt) could

have important consequences for valuation even in the absence of a martingale component for the

stochastic discount factor process.

As a priced cash-flow, we consider the aggregate consumption flow process Ca given by

Ca
t = [aeψ (Xt) + ah [1− ψ (Xt)]− ι (Xt)]Kt (40)

where ι(x) is the aggregate investment rate, ψ(x) is the fraction of the capital stock owned by the

experts, and ae > ah are the output productivities of the experts and households, respectively. Thus

Ca
t is equal to aggregate output net of aggregate investment. Aggregate consumption is therefore

given as a stationary fraction of aggregate capital. Thus aggregate consumption flow and capital

stock processes share a common martingale component.22

7.3.5 Shock elasticities and term structure of yields

The top left panel in Figure 4 depicts the drift and volatility coefficients for the state variable Xt.

At the right boundary x̄, the experts accumulated a sufficiently large share of capital and start

consuming. Given their risk neutrality, the boundary behaves as a reflecting boundary. At the

left boundary, the situation is notably different. Experts’ ability to intermediate capital is limited

by their own net worth, and hence their portfolio choice corresponds to an effectively risk averse

22Brunnermeier and Sannikov (2014) also consider an extension where experts and households are endowed with
logarithmic utilities. In that case consumption of both households and experts are given as constant fractions of their
respective net worth, and the stochastic discount factor of the experts inherits the martingale component from the
reciprocal of the aggregate capital process.
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Figure 4: Dynamics of the experts’ wealth share Xt = Nt/(QtKt) (horizontal axis), shock-exposure
and shock-price elasticities for the Brunnermeier and Sannikov (2014) model. Top left panel shows
the drift and volatility coefficients for the evolution of Xt, while top right panel the stationary
density for Xt. Panels in the bottom row show the short- and long-horizon shock elasticity for
the aggregate consumption process Ca. The intermediation constraint binds in the interval Xt ∈
(0, 0.25), and x∗ = 0.25 corresponds to the 15% quantile of the stationary distribution of X.

agent. The left boundary is natural and nonattracting.

The existence of a stationary distribution, depicted in the second panel of Figure 4, arises from

a combination of two forces. Experts are more impatient, so whenever they accumulate a sufficient

share of capital, they start consuming, which prevents them from taking over the whole economy.

On the other hand, when their wealth share falls, their intermediation ability becomes scarce, the

expected return on capital rises, and they use their superior investment technology to accumulate

wealth at a faster rate than households.

The stationary density has peaks at each of the two boundaries. The positive drift coefficient

µ (x) implies that there is a natural pull toward the right boundary, creating the peak in the density

there. However, whenever a sequence of shocks brings the economy close to the left boundary,

solvency constraints imply that it takes time for experts to accumulate wealth again, and the

economy spends a long period time in that part of the state space. Economically, most times are

‘good’ times when intermediation is fully operational, with rare periods of protracted ‘financial
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Figure 5: Shock exposure and shock price elasticities for the Brunnermeier and Sannikov (2014)
model. Individual lines correspond to alternative choices of the current state, the experts’ wealth
share X0 = x. The blue solid line represents the state in which the intermediation constraint starts
binding (x = 0.247), corresponding to the 14.5% quantile of the stationary distribution of Xt. The
red dashed line corresponds to the 5% quantile of the stationary distribution of Xt (intermediation
constraint tightly binding) while the red dotted line corresponds to the 95% quantile.
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Figure 6: Yields and excess yields for the Brunnermeier and Sannikov (2014) model. Parametriza-
tion and description as in Figure 5.

crises’.

The bottom row of Figure 4 plots the shock elasticities for the aggregate consumption process

(40). Observe that the short-horizon exposure elasticity is negative in a part of the state space,

making aggregate consumption countercyclical there. The long-horizon elasticities are noticeably

higher, and particularly high when the intermediation constraint binds. The discontinuity at Xt =

x∗ is caused by the change in consumption behavior in the moment when the intermediation

constraint starts binding.

Given that the stochastic discount factor has no martingale component, the long-horizon shock-

price elasticity is zero. On the other hand, the short-horizon price of risk varies strongly with the
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wealth share of the experts. This state dependence is also confirmed in Figure 5 which plots the

shock elasticity functions for selected points in the state space. Shock-exposure elasticities for

the aggregate consumption process {Ca
t : t ≥ 0} increase with maturity, while the shock-price

elasticities vanish as t → ∞. Notice that there is a sign reversal in the exposure elasticities

for aggregate consumption. The shock-exposure elasticities are initially negative but eventually

become positive in the middle part of the state space, mirroring the bottom left panel of Figure 4.

This pattern emerges because of the equilibrium investment responses over short horizons lead to

more substantial longer-term consumption responses in the constrained states. Nevertheless, the

shock-price elasticities are positive for all horizons and states that we consider.

Finally, Figure 6 plots the yields on risk-free bonds and claims on horizon-specific cash flows

from aggregate consumption. In line with the non-monotonicity of the shock-exposure elasticities

across states in Figure 4, the short-maturity yields are also non-monotonic, being lowest, and in

fact lower than the risk-free rate, in the center of the distribution of the state Xt.

8 Directions for further research

In this chapter, we developed dynamic value decompositions (DVD’s) for the study of intertem-

poral asset pricing implications of dynamic equilibrium models. We constructed shock elasticities

as building blocks for these decompositions. The DVD methods are distinct but potentially com-

plementary to the familiar Campbell and Shiller (1988) decomposition. Campbell and Shiller use

linear VAR methods to quantify the impact of (discounted) “cash flow shocks” and “expected re-

turn shocks” on price-dividend ratios. In general these shocks are correlated and are themselves

combinations of shocks that are fundamental to structural models of the macroeconomy. Our aim is

to explore pricing implications of models in which alternative macroeconomic shocks are identified

and their impact quantified. We replaced linear approximation with local sensitivity analysis, and

we characterized how cash flows are exposed to alternative macroeconomic shocks and what the

corresponding price adjustments are for these exposures. We showed that shock elasticities are

mathematically and economically related to impulse response functions. The shock elasticities rep-

resent sensitivities of expected cash flows to alternative macroeconomic shocks and the associated

market implied compensations when looking across differing investment horizons.

We apply these DVD methods to a class of dynamic equilibrium models that feature financial

frictions and segmented markets. The methods uncover the ways financial frictions contribute to

pricing of alternative cash flows and to the shape of the term structure of macroeconomic risk

prices.

There are two extensions of our analysis that require further investigation. First risk prices

are only well-defined relative to an underlying probability distribution. In this chapter we have

not discussed the consequences for pricing when investors inside our models use different prob-

ability measures than the data-generating measure presumed by an econometrician. Typically,

researchers invoke an assumption of rational expectations to connect investor perceptions with the

data generation. More generally, models of investors that allow for subjective beliefs, learning,
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ambiguity aversion or concerns about model misspecification alter how we interpret market based

compensations for exposure to macroeconomic fluctuations. For instance, see Hansen (2014) for

further discussion. Incorporating potential belief distortions into the analysis should be a valuable

extension of these methods.

Second, we left aside empirical and econometric aspects of the identification of shocks and

measurement of risk premia. The empirical finance literature has made considerable progress

in the characterization and measurement of the term structure of risk premia in various asset

markets. The challenge for model building is to connect these empirical facts to specific sources of

macroeconomic risks and financial market frictions of model economies. Our methodology suggests

a way to make these connections, but further investigation is required.

Finally, we refrained from the discussion of implications for policy analysis. Financial frictions

create economic externalities that can potentially be rectified by suitable policy actions. Since asset

prices enter these financial constraints, understanding their behavior is an important ingredient to

meaningful policy design. Forward looking asset prices provide both a source of information about

private sector beliefs and an input into the regulatory challenges faced in the conduct of policy.

Our methods can help to uncover asset pricing implications for alternative potential policies.
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Appendix

A Exponential-quadratic framework

Let X = (X ′

1, X
′

2)
′ be a 2n× 1 vector of states, W ∼ N(0, I) a k× 1 vector of independent Gaussian shocks,

and Ft the filtration generated by (X0,W1, . . . ,Wt). In this appendix, we show that given the law of motion

from equation (21)

X1,t+1 = Θ10 +Θ11X1,t + Λ10Wt+1 (41)

X2,t+1 = Θ20 +Θ21X1,t +Θ22X2,t +Θ23 (X1,t ⊗X1,t) +

+Λ20Wt+1 + Λ21 (X1,t ⊗Wt+1) + Λ22 (Wt+1 ⊗Wt+1)

and a multiplicative functional Mt = exp (Yt) whose additive increment is given in equation (22):

Yt+1 − Yt = Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t) + (42)

+Ψ0Wt+1 +Ψ1 (X1,t ⊗W1,t+1) + Ψ2 (Wt+1 ⊗Wt+1) ,

we can write the conditional expectation of M as

logE [Mt | F0] =
(
Γ̄0

)
t
+
(
Γ̄1

)
t
X1,0 +

(
Γ̄2

)
t
X2,0 +

(
Γ̄3

)
t
(X1,0 ⊗X1,0) (43)

where
(
Γ̄i

)
t
are constant coefficients to be determined.

The dynamics given by (41)–(42) embed the perturbation approximation constructed in Section 5.2 as

a special case. The Θ and Λ matrices needed to map the perturbed model into the above structure are

constructed from the first and second derivatives of the function ψ(x,w, q) that captures the law of motion

of the model, evaluated at (x̄, 0, 0):

Θ10 = ψq Θ11 = ψx Λ10 = ψw

Θ20 = ψqq Θ21 = 2ψxq Θ22 = ψx Θ23 = ψxx

Λ20 = 2ψwq Λ21 = 2ψxw Λ22 = ψww

where the notation for the derivatives is defined in Appendix A.2.

A.1 Definitions

To simplify work with Kronecker products, we define two operators vec and matm,n. For an m× n matrix

H , vec (H) produces a column vector of length mn created by stacking the columns of H :

h(j−1)m+i = [vec(H)](j−1)m+i = Hij .

For a vector (column or row) h of lengthmn, matm,n (h) produces anm×nmatrixH created by ‘columnizing’

the vector:

Hij = [matm,n(h)]ij = h(j−1)m+i.

We drop the m,n subindex if the dimensions of the resulting matrix are obvious from the context.
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For a square matrix A, define the sym operator as

sym (A) =
1

2
(A+A′) .

Apart from the standard operations with Kronecker products, notice that the following is true. For a row

vector H1×nk and column vectors Xn×1 and Wn×1

H (X ⊗W ) = X ′ [matk,n (H)]
′

W

and for a matrix An×k, we have

X ′AW = (vecA′)
′

(X ⊗W ) . (44)

Also, for An×n, Xn×1, Kk×1, we have

(AX)⊗K = (A⊗K)X

K ⊗ (AX) = (K ⊗A)X.

Finally, for column vectors Xn×1 and Wk×1,

(AX)⊗ (BW ) = (A⊗B) (X ⊗W )

and

(BW )⊗ (AX) = [B ⊗A•j ]
n
j=1 (X ⊗W )

where

[B ⊗A•j ]
n
j=1 = [B ⊗A•1 B ⊗A•2 . . . B ⊗A•n] .

A.2 Concise notation for derivatives

Consider a vector function f (x,w) where x and w are column vectors of length m and n, respectively. The

first-derivative matrix fi where i = x,w is constructed as follows. The k-th row [fi]k• corresponds to the

derivative of the k-th component of f

[fi (x,w)]k• =
∂f (k)

∂i′
(x,w) .

Similarly, the second-derivative matrix is the matrix of vectorized and stacked Hessians of individual

components with k-th row

[fij (x,w)]k• =

(
vec

∂2f (k)

∂j∂i′
(x,w)

)′

.

It follows from formula (44) that, for example,

x′
(
∂2f (k)

∂x∂w′
(x,w)

)
w =

(
vec

∂2f (k)

∂w∂x′
(x,w)

)′

(x ⊗ w) = [fxw (x,w)]k• (x⊗ w) .
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A.3 Conditional expectations

Notice that a complete-the squares argument implies that, for a 1 × k vector A, a 1 × k2 vector B, and a

scalar function f (w),

E [exp (B (Wt+1 ⊗Wt+1) +AWt+1) f (Wt+1) | Ft] = (45)

= E

[
exp

(
1

2
W ′

t+1 (matk,k (2B))Wt+1 +AWt+1

)
f (Wt+1) | Ft

]

= |Ik − sym [matk,k (2B)]|
−1/2

exp

(
1

2
A (Ik − sym [matk,k (2B)])

−1
A′

)
Ẽ [f (Wt+1) | Ft]

where ·̃ is a measure under which

Wt+1 ∼ N
(
(Ik − sym [matk,k (2B)])

−1
A′, (Ik − sym [matk,k (2B)])

−1
)
.

We start by utilizing formula (45) to compute

Ȳ (Xt) = logE [exp (Yt+1 − Yt) | Ft] =

= Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t) +

+ logE

[
exp

([
Ψ0 +X ′

1t [matk,n (Ψ1)]
′
]
Wt+1 +

1

2
W ′

t+1 [matk,k (Ψ2)]Wt+1

)
| Ft

]

= Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t)−

−
1

2
log |Ik − sym [matk,k (2Ψ2)]|+

1

2
µ′ (Ik − sym [matk,k (2Ψ2)])

−1
µ

with µ defined as

µ = Ψ′

0 + [matk,n (Ψ1)]X1,t.

Reorganizing terms, we obtain

Ȳ (Xt) = Γ̄0 + Γ̄1X1,t + Γ̄2X2,t + Γ̄3 (X1,t ⊗X1,t) (46)

where

Γ̄0 = Γ0 −
1

2
log |Ik − sym [matk,k (2Ψ2)]|+

1

2
Ψ0 (Ik − sym [matk,k (2Ψ2)])

−1 Ψ′

0

Γ̄1 = Γ1 +Ψ0 (Ik − sym [matk,k (2Ψ2)])
−1

[matk,n (Ψ1)] (47)

Γ̄2 = Γ2

Γ̄3 = Γ3 +
1

2
vec

[
[matk,n (Ψ1)]

′

(Ik − sym [matk,k (2Ψ2)])
−1

[matk,n (Ψ1)]
]
′

.

For the set of parameters P = (Γ0, . . . ,Γ3,Ψ0, . . . ,Ψ2), equations (47) define a mapping

P̄ = Ē (P) ,

with all Ψ̄j = 0. We now substitute the law of motion for X1 and X2 to produce Ȳ (Xt) = Ỹ (Xt−1,Wt). It
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is just a matter of algebraic operations to determine that

Ỹ (Xt−1,Wt) = logE [exp (Yt+1 − Yt) | Ft] =

= Γ̃0 + Γ̃1X1,t−1 + Γ̃2X2,t−1 + Γ̃3 (X1,t−1 ⊗X1,t−1)

+Ψ̃0Wt + Ψ̃1 (X1,t−1 ⊗Wt) + Ψ̃2 (Wt ⊗Wt)

where

Γ̃0 = Γ̄0 + Γ̄1Θ10 + Γ̄2Θ20 + Γ̄3 (Θ10 ⊗Θ10) (48)

Γ̃1 = Γ̄1Θ11 + Γ̄2Θ21 + Γ̄3 (Θ10 ⊗Θ11 +Θ11 ⊗Θ10)

Γ̃2 = Γ̄2Θ22

Γ̃3 = Γ̄2Θ23 + Γ̄3 (Θ11 ⊗Θ11)

Ψ̃0 = Γ̄1Λ10 + Γ̄2Λ20 + Γ̄3 (Θ10 ⊗ Λ10 + Λ10 ⊗Θ10)

Ψ̃1 = Γ̄2Λ21 + Γ̄3

(
Θ11 ⊗ Λ10 +

[
Λ10 ⊗ (Θ11)•j

]n
j=1

)

Ψ̃2 = Γ̄2Λ22 + Γ̄3 (Λ10 ⊗ Λ10) .

This set of equations defines the mapping

P̃ = Ẽ
(
P̄
)
.

A.4 Iterative formulas

We can write the conditional expectation in (43) recursively as

logE [Mt | F0] = logE

[
exp (Y1 − Y0)E

[
Mt

M1
| F1

]
| F0

]
.

Given the mappings Ē and Ẽ , we can therefore express the coefficients P̄ in (43) using the recursion

P̄t = Ē
(
P + Ẽ

(
P̄t−1

))

where the addition is by coefficients and all coefficients in P̄0 are zero matrices.

A.5 Coefficients Φ∗
i

In the above calculations, we constructed a recursion for the coefficients in the computation of the conditional

expectation of the multiplicative functional M . A single iteration of this recursion can be easily adapted

to compute the coefficients Φ∗

i , i = 0, . . . 3, in the conditional expectation in equation (24) for an arbitrary

function log f (x).

1. Associate log f (xt+1) = Y (xt+1) from equation (46), i.e., set Γi , i = 0, . . . , 3, in equation (46) equal

to the desired Φi from equation (23). These are the coefficients in set P .

2. Apply the mapping Ẽ
(
P
)
, i.e., compute Γ̃i, i = 0, . . . , 3 and Ψ̃i, i = 0, 1, 2 using (48). This yields the

function log f̃ (xt, wt+1) ≡ log f (xt+1), with coefficient set P̃

3. Add to these coefficients Γ̃i and Ψ̃i the corresponding coefficients Γi and Ψi of Yt+1−Yt from equation

(42), i.e., form coefficient set P + Ẽ
(
P
)
.
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4. Apply the mapping E
(
P + Ẽ

(
P
))

, i.e., compute (47) where on the right hand side the coefficients

Γi and Ψi (coefficient set P) are replaced with coefficients computed in the previous step, i.e., set

P + Ẽ
(
P
)
.

5. The resulting coefficients Γi, i = 0, . . . , 3, are the desired coefficients Φ∗

i .

B Shock elasticity calculations

In this appendix, we provide details on some of the calculations underlying the derived shock elasticity

formulas for the convenient functional form from Section 5.1.1. In particular we show, using a complete-the-

squares argument, that under the transformed measure generated by the random variable L1,t from (25) the

shock W1 remains normally distributed with a covariance matrix:

Σ̃t =
[
Ik − 2 sym

(
matk,k

[
Ψ2 +Φ∗

2,t−1Λ22 +Φ∗

3,t−1 (Λ10 ⊗ Λ10)
])]

−1
.

where Ik is the identity matrix of dimension k.23 We suppose that this matrix is positive definite. The

conditional mean vector for W1 under the change of measure is:

Ẽ [W1 | X0 = x] = Σ̃t [µt,0 + µt,1x1] ,

where Ẽ is the expectation under the change of measure and the coefficients µt,0 and µt,1 are given in the

following derivation.

Thus the shock elasticity is given by:

ε (x, t) = ν(x) ·E [L1,tW1 | X0 = x]

= ν(x)′Σ̃t [µt,0 + µt,1x1] .

The shock elasticity function in this environment depends on the first component, x1, of the state vector.

Recall from (21) that this component has linear dynamics. The coefficient matrices for the evolution of the

second component, x2, nevertheless matter for the shock elasticities even though these elasticities do not

depend on this component of the state vector.

B.1 Shock elasticities under the convenient functional form

To calculate the shock elasticities in Section 5.1.1, utilize the formulas derived in Appendix A to deduce the

one-period change of measure

logL1,t = logM1 + logE

(
Mt

M1
| X1

)
− logE

[
M1E

(
Mt

M1
| X1

)
| X0 = x

]
.

In particular, following the set of formulas (48), define

µ0,t =
[
Ψ1 +Φ∗

1,t−1Λ1,0 +Φ∗

2,t−1Λ20 +Φ∗

3,t−1 (Θ10 ⊗ Λ10 + Λ10 ⊗Θ10)
]
′

µ1,t = matk,n

[
Ψ1 +Φ∗

2,t−1Λ21 +Φ∗

3,t−1

(
Θ11 ⊗ Λ10 +

[
Λ10 ⊗ (Θ11)•j

]n
j=1

)]

µ2,t = sym
[
matk,k

(
Ψ2 + Γ̄2Λ22 + Γ̄3 (Λ10 ⊗ Λ10)

)]
.

23This formula uses the result that (Λ10W1)⊗ (Λ10W1) = (Λ10 ⊗ Λ10) (W1 ⊗W1).
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Then it follows that

logL1,t = (µ0,t + µ1,tX1,0)
′

W1 + (W1)
′

µ2,tW1 −

−
1

2
logE

[
exp

(
(µ0,t + µ1,tX1,0)

′

W1 + (W1)
′

µ2,tW1

)
| F0

]
.

Expression (45) then implies that

E [L1,tW1 | F0] = Ẽ [W1 | F0] =

= (Ik − 2µ2,t)
−1

(µ0,t + µ1tX1,0) .

The variance of W1 under the ·̃ measure satisfies

Σ̃t =
(
Ik − 2sym

[
matk,k

(
Ψ2 + Γ̄2Λ22 + Γ̄3 (Λ10 ⊗ Λ10)

)])
−1

.

B.2 Approximation of the shock elasticity function

In Section 5.3.1, we constructed the approximation of the shock elasticity function ε (x, t). The first-order

approximation is constructed by differentiating the elasticity function under the perturbed dynamics

ε1 (X1,0, t) =
d

dq
ν(X0 (q)) ·

E [Mt (q)W1 | X0 = x]

E [Mt (q) | X0 = x]

∣∣∣∣
q=0

= ν (x̄) · E [Y1,tW1 | X0 = x] .

The first-derivative process Y1,t can be expressed in terms of its increments, and we obtain a state-independent

function

ε1 (t) = ν (x̄) ·E




t−1∑

j=1

κx (ψx)
j−1

ψw + κw



′

where κx, ψx, κw, ψw are derivative matrices evaluated at the steady state (x̄, 0).

Continuing with the second derivative, we have

ε2 (X1,0, X2,0, t) =
d2

dq2
ν(X0 (q)) ·

E [Mt (q)W1 | X0 = x]

E [Mt (q) | X0 = x]

∣∣∣∣
q=0

=

= ν (x̄) ·
{
E
[
(Y1,t)

2
W1 + Y2,tW1 | F0

]
− 2E [Y1,tW1 | F0]E [Y1,t | F0]

}
+

+2

[
∂ν

∂x′
(x̄)

]
X1,0 ·E [Y1,tW1 | F0] .

However, notice that

E
[
(Y1,t)

2
W1 | F0

]
= 2




t−1∑

j=0

κx (ψx)
j
X1,0







t−1∑

j=1

κx (ψx)
j−1

ψw + κw




′

E [Y1,tW1 | F0] =




t−1∑

j=1

κx (ψx)
j−1

ψw + κw




′

E [Y1,t | F0] =
t−1∑

j=0

κx (ψx)
j X1,0
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and thus

E
[
(Y1,t)

2
W1 | F0

]
− 2E [Y1,tW1 | F0]E [Y1,t | F0] = 0.

The second-order term in the approximation of the shock elasticity function thus simplifies to

ε2 (X1,0, X2,0, t) = ν (x̄) · E [Y2,tW1 | F0] + 2

[
∂ν

∂x′
(x̄)

]
X1,0 ·E [Y1,tW1 | F0] .

The expression for the first term on the right-hand side is

E [Y2,tW1 | F0] = E




t−1∑

j=0

(Y2,j+1 − Y2,j)W1 | F0


 = 2matk,n (κxw)X1,0 +

+2

t−1∑

j=1

[
ψ′

w (ψ′

x)
j−1

matn,n (κxx) (ψx)
j
+matk,n

[
κx (ψx)

j−1
ψxw

]]
X1,0

+2

t−1∑

j=1

j−1∑

k=1

[
ψ′

w (ψ′

x)
k−1

matn,n

[
κx (ψx)

j−k−1
ψxx

]
(ψx)

k
]
X1,0.

To obtain this result, notice that repeated substitution for Y1,j+1 − Y1,j into the above formula yields a

variety of terms but only those containing X1,0⊗W1 have a nonzero conditional expectation when interacted

with W1.
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Hansen, Lars Peter and José A. Scheinkman. 2012. Pricing Growth-Rate Risk. Finance and

Stochastics 16:1–15.

Hansen, Lars Peter, Thomas J. Sargent, and Jr. Tallarini, Thomas D. 1999. Robust Permanent

Income and Pricing. The Review of Economic Studies 66 (4):873–907.

Hansen, Lars Peter, John C. Heaton, and Nan Li. 2008. Consumption Strikes Back? Measuring

Long-Run Risk. Journal of Political Economy 116:260–302.
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