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1. The Bansal–Yaron Model with Time-Varying Volatility

In the main paper we study existence and uniqueness of finite valuations of consumption
streams under the specification provided in Section 1.A of Bansal and Yaron (2004), which
features constant volatility. We also study existence and uniqueness for the specification
of Schorfheide et al. (2018). Here we repeat some of these exercises for the consumption
specification from Section 1.B of Bansal and Yaron (2004), which, like Schorfheide et al.
(2018), has time-varying volatility.

The specification of consumption growth in Section 1.B of Bansal and Yaron (2004) is

ln(Ct+1/Ct) = µc + zt + σt ηc,t+1,

zt+1 = ρzt + φz σt ηz,t+1,

σ2
t+1 = max

{
v σ2

t + d + φσ ησ,t+1, 0
}

.

Here, {ηi,t} are iid and standard normal for i ∈ {c, z, σ}. The Markov state for consump-
tion growth is taken to be Xt = (zt, σt). As in Bansal and Yaron (2004), the preference
parameters are set to γ = 10.0, β = 0.998, and ψ = 1.5, while those for the consump-
tion process are µc = 0.0015, ρ = 0.979, φz = 0.044, v = 0.987, d =7.9092e-7, and
φσ =2.3e-6.

Following the same procedure as for the Schorfheide et al. (2018) model, we begin with
the Monte Carlo method, so that compactification is implemented implicitly at the largest
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Figure 1. Changes in test value Λ, ψ versus µc.

double-precision floating-point number. With n = m = 1, 000, we obtain a value of ap-
proximately 0.998.1 Figure 1 reinforces the finding of stability by showing estimated values
of Λ over a range of different parameterizations, represented as a contour plot. The figure
shows that the conclusion Λ < 1 survives large deviations in the intertemporal elasticity
of substitution parameter ψ and the mean consumption growth rate µc. In particular,
starting from the baseline parameterization of Bansal and Yaron (2004), one would have
to increase both of these parameters to very high levels to obtain a parameterization at
which Λ exceeds unity.2

2. Unboundedness Result

In the next part of this appendix we prove the following result, which was stated in the
main paper.

Theorem IA.1. If Assumptions 1 and 3 hold, then the following statements are equiva-
lent:

1Generating the statistic 1,000 times produced a mean value of 0.998128 with standard deviation
0.000053. We also implemented a discretized verion, which led to a similar outcome. Discretization was
achieved by multiple iterations of the univariate Rouwenhorst method. We first applied the method to
{σt}, producing a Markov chain with I states. Then, for each of the I possible values of σt, we again used
the Rouwenhorst method to discretize {zt} across J possible states. The implementations are identical to
those used for the Schorfheide et al. (2018) model, apart from the modified specification for consumption
growth. When I = J = 4, so that the state space has 16 elements, the spectral radius method returned
Λ = 0.998044.

2At each parameterization, the value Λ was calculated by the non-discretized Monte Carlo method,
with m = n = 1000.
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(a) Λ < 1.
(b) A has a fixed point in C .
(c) There exists a g ∈ C such that {Ang}n>1 converges to an element of C .

Throughout the following, the state space X is allowed to be any σ-compact metric space.
The collection of Borel-measurable functions g from X to R such that ∥g∥ :=

∫
|g|dπ is

denoted by L1(X, π). Convergence is with respect to ∥ · ∥ unless otherwise stated. For
g, h ∈ L1(X, π), the statement g ≪ h means that g < h holds π-almost everywhere.
Other definitions are as stated in the main paper.

One step of the proof concerns continuity of the spectral radius when a positive operator
is approximated from below. The following lemma presents such a result, which builds
on a valuable theorem due to Schep (1980).

Lemma IA.2. Let {Tn} and T be bounded linear operators on L1(X, π) such that 0 6
Tn 6 Tn+1 6 T for all n. If Tn f → T f in norm as n → ∞ for each f in the positive cone
C and Ti is compact for some i ∈ N, then r(Tn) ↑ r(T).

Proof: It is clear that 0 6 Ti
n 6 Ti

n+1 6 Ti for all n. Moreover, given f ∈ C , we
have Ti

n f → Ti f as n → ∞, as follows from induction. Indeed, Tn f → T f , and if
Ti−1

n f → Ti−1 f , then

∥Ti
n f − Ti f ∥ 6 ∥Ti

n f − TnTi−1 f ∥+ ∥TnTi−1 f − Ti f ∥

6 ∥Tn∥ · ∥Ti−1
n f − Ti−1 f ∥+ ∥TnTi−1 f − Ti f ∥

6 ∥T∥ · ∥Ti−1
n f − Ti−1 f ∥+ ∥TnTi−1 f − TTi−1 f ∥ → 0.

Here convergence to zero of the first term is by the induction hypothesis, while that of
the second term is by the fact that Ti−1 f ∈ C .

We can now apply the spectral continuity result of Schep (1980), Theorem 2.4, to the
family of operators {Ti

n, Ti}, noting that by assumption Ti is compact. Further, Ti is
order-continuous because it is norm-continuous (see Zaanen (1997), p. 147). This gives
r(Ti

n) ↑ r(Ti). But then r(Tn) ↑ r(T) also holds. �

The next lemma gives conditions under which the limit of a sequence of fixed points
associated with a sequence of approximating maps is itself a fixed point.

Lemma IA.3. Let (E, d) be a metric space and let T and {Tm}m∈N be self-maps on E
with the property Tmu → Tu for all u ∈ E. Let ūm be a fixed point of Tm for each m and
suppose that ūm → ū for some ū ∈ E. If T is continuous on E and the maps {Tm} are
uniformly Lipschitz-continuous, then ū is a fixed point of T.
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Proof: We have Tū = limm→∞ Tmū, so one only need show that Tmū → ū. To this end,
observe that

d(Tmū, ū) 6 d(Tmū, Tmūm) + d(Tmūm, ū) = d(Tmū, Tmūm) + d(ūm, ū).

Taking L as the uniform Lipschitz constant for {Tm}, this yields

d(Tmū, ū) 6 (L + 1)d(ūm, ū) → 0.

Lemma IA.4. If Assumption 3 holds, then Ki is compact for some i ∈ N.

Proof: Under Assumption 3, there exists an m ∈ N such that Km is weakly compact. But
then, by Theorem 9.9 of Schaefer (1974), corollary 1, K2m is compact. Set i = 2m. �

We now turn to the proof of Theorem IA.1. The proof of existence of a fixed point in
Theorem IA.1 uses a limiting argument based on approximating X with compact sets. To
set this up, let {Fm}m>1 be a sequence of compact subsets of X with Fm ⊂ Fm+1 for all
m ∈ N and ∪m>1Fm = X. Let Km be the operator on L1(X, π) defined by

Kmg(x) = 1{x ∈ Fm}
∫

Fm
k(x, y)g(y)dy (x ∈ X).

Note that Km is also a positive linear operator and 0 6 Km 6 Km+1 6 K for all m ∈ N.
It follows that Km is a bounded linear operator on L1(X, π).

Lemma IA.5. If f ∈ C , then ∥Km f − K f ∥ → 0 as m → ∞.

Proof: Fix f ∈ C . For any given m ∈ N, we have

∥Km f − K f ∥ 6
∫ ∫

k(x, y)em(x, y)| f (y)|dy π(dx),

where em(x, y) := 1−1Fm(x)1Fm(y). Since K is a bounded linear operator, the integral on
the right-hand side is finite, so we need only show that the integrand converges pointwise
to zero. But this is immediate from the definition of {Fm}. �

Given g : Fm → R, its extension emg to X is defined as the function equal to g on Fm

and zero on Fc
m. Given g : X → R, its restriction cmg to Fm is defined as the function

cmg equal to g on Fm. In addition, let K̄ be the restriction of Km to real functions on Fm.
That is,

K̄mg(x) =
∫

Fm
k(x, y)g(y)dy (x ∈ Fm).

We regard K̄m as a mapping on L1(Fm, π̄m), where π̄m := cmπ. Note that

Am = em Āmcm on C , (1)
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where Am := φ ◦ Km and Ām := φ ◦ K̄m. The latter is a self-mapping on Cm, the positive
cone of L1(Fm, π̄m).

Lemma IA.6. If g in Cm is a fixed point of Ām, then emg is a fixed point of Am.

Proof: For such g ∈ Cm, we have Amemg = em Āmcmemg = em Āmg = emg. �

Lemma IA.7. We have ∥K̄m∥ = ∥Km∥ for all m ∈ N.

Proof: Fix f ∈ L1(X, π) with ∥ f ∥ 6 1. Let f̄ be the restriction of f to Fm. Note that

∥ f̄ ∥ =
∫

| f̄ |π̄(x)dx 6 ∥ f ∥ 6 1.

We have

∥K̄ f̄ ∥ =
∫

Fm

∣∣∣∣∫Fm
k(x, y) f (x)

∣∣∣∣π(x)dx =
∫

|Km f (x)|π(x)dx = ∥Km f ∥.

In particular, ∥Km f ∥ = ∥K̄m f̄ ∥ 6 ∥K̄m∥, and hence taking the supremum on the left-hand
side, ∥Km∥ 6 ∥K̄m∥.

To see that the reverse inequality holds, fix f̄ ∈ L1(Fm, π̄) with ∥ f̄ ∥ 6 1. Let f ∈ L1(X, π)

be defined by f = f̄ on Fm and f = 0 elsewhere. Note that

∥ f ∥ =
∫

| f |π(x)dx =
∫

| f̄ |π̄(x)dx = ∥ f̄ ∥ 6 1.

In addition, by an identical argument to that given just above, we have ∥K̄ f̄ ∥ = ∥Km f ∥.
It follows that ∥K̄m f̄ ∥ 6 ∥Km∥, and taking the supremum on the left-hand side over all
such f̄ yields ∥K̄m∥ 6 ∥Km∥. �

Lemma IA.8. If r(K) > 1/βθ, then there exists an M ∈ N such that r(K̄m) > 1/βθ

whenever m > M.

Proof: In view of Lemma IA.7 and the definition of the spectral radius, it suffices to prove
that r(Km) > 1 for sufficiently large m. This will be true if r(Km) → r(K), which by
Lemma IA.2 will hold if (a) Ki is compact for some i ∈ N, (b) 0 6 Km 6 Km+1 6 K
for all m, and (c) Km f → K f in norm for each f in Lp(X, π)+. We already have (a) by
Lemma IA.4 and (b) is true by construction. Finally, (c) holds by Lemma IA.5. �

Proposition IA.9. Under the conditions of Theorem IA.1, Λ is well defined and satisfies
Λ = β r(K)1/θ.

The proof is identical to that of Proposition C.4 in the paper itself.
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Lemma IA.10. If θ < 0 and Λ < 1, then there exists an M ∈ N such that, for all
m > M, the operator Am has a nonzero fixed point gm in C , and gm 6 gm+1 for all such
m.

Proof: If θ < 0 and Λ < 1, then, by Proposition IA.9, we have r(K) > 1/βθ. Now let
M be as in Lemma IA.8 and take m > M. Observe that Ām has a unique nonzero fixed
point ḡm in Cm, since Fm is compact (as follows from our results in the main paper). It
then follows from (1) that Amem ḡm = em Āmcmem ḡm = em ḡm, so gm := em ḡm is a fixed
point of Am. Since ḡm is nonzero on Fm, the function gm is nonzero on X.

It remains to prove that gm 6 gm+1 for all m > M. To see this, pick any such m and
observe that, since Km 6 Km+1 on C and φ is increasing, we have Am+1gm > Amgm = gm.
Using isotonicity of Am+1 and iterating now gives An

m+1gm > gm for all n. Moreover,
since gm is nonzero on Fm and hence on Fm+1, the convergence result in Theorem 2.1 from
the main text applied on the compact state space Fm+1 implies that An

m+1gm → gm+1

uniformly. Hence, gm+1 > gm, as was to be shown. �

Lemma IA.11. If θ < 0, then the family {An} is uniformly Lipschitz-continuous on C .

Proof. When θ < 0, the scalar map φ is Lipschitz with Lipschitz constant one. Hence,
for arbitrary m ∈ N and f , g ∈ C , we have

|Am f − Amg| 6 |Km f − Kmg| = |Km( f − g)| 6 Km| f − g| 6 K| f − g|.

∴ ∥Am f − Amg∥ 6 ∥K∥ · ∥ f − g∥.

Proof of Theorem IA.1: First we show that (a) and (b) are equivalent under the stated
assumptions, starting with the implication (a) =⇒ (b). For the case θ > 0, there is
nothing to show, since the existence component of the proof for the compact case (from
the main paper) does not require compactness of X. Hence, below we focus on the case
θ < 0. Our proof uses Lemma IA.3, with the metric space (C , ∥ · ∥) and maps {Am} and
A.

First observe that, by Lemma IA.5, for each given f ∈ C , we have Km f → K f as m → ∞.
Since φ is Lipschitz of order one when θ < 0, it follows immediately that Am f → A f
as m → ∞. By Lemma IA.10, there exists an M ∈ N such that, for all m > M, the
operator Am has a nonzero fixed point gm in C , and gm 6 gm+1 for all such m. Since φ

is bounded above by b := (1 − β)θ when θ < 0, it must be the case that gm 6 gm+1 6 b
for all m. Any order-bounded monotone sequence in L1(X, π) converges to an element of
that set. This limit we denote by g. In view of Lemma IA.3, this g will be a fixed point
of A whenever A is continuous and {Am} is uniformly Lipschitz-continuous. Continuity
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of A is immediate from the properties of K and φ, while uniform Lipschitz continuity of
{Am} follows from Lemma IA.11. The proof of (a) =⇒ (b) is now done.

Now we turn to (b) =⇒ (a). Here we can use exactly the same proof that we used when
X was compact, in Proposition C.9 in the main text. There, compactness of X was used
only to ensure that Ki is a compact operator in L1(X, π) for some i ∈ N. The latter
property still holds in our setting, by Lemma IA.4.

Finally, (b) and (c) are also equivalent. That (b) implies (c) is obvious. That (c) implies
(b) follows from continuity of A as a self-map on C , since the limit g∗ := limn→∞ Ang is
then a fixed point of A. �

3. Valuation Under iid Growth

In this section we investigate an interpretation of Λ related to the valuation of consump-
tion strips. In particular, we show that the condition Λ < 1, which guarantees finite
valuation in the recursive utility model, implies an upper bound on the risk-adjusted
growth rate of consumption relative to the risk-free rate. To preserve tractability, we
study the case in which ln (Ct+1/Ct) = µ + σWt+1 for some iid sequence {Wt}. The
risk-adjusted growth rate of consumption is then given by

MC =

{
E

[(
Ct+1

Ct

)1−γ
]} 1

1−γ

= exp
(

µ +
1
2
(1 − γ) σ2

)
,

and hence

Λ = β (MC)
1− 1

ψ = β exp
((

1 − 1
ψ

)(
µ +

1
2
(1 − γ) σ2

))
.

In this environment, the scaled continuation value Vt/Ct
.
= v is constant. The Epstein

and Zin (1989) stochastic discount factor St can then be written as

St+1

St
= β

(
Ct+1

Ct

)− 1
ψ

 Vt+1

Et

[
V1−γ

t+1

]1/(1−γ)


1
ψ−γ

= β (MC)
γ− 1

ψ

(
Ct+1

Ct

)−γ

.

From this, we have the growth rate in the value of consumption strips as their maturity
increases

Et

[
St+1

St

Ct+1

Ct

]
= Et

[
β (MC)

γ− 1
ψ

(
Ct+1

Ct

)1−γ
]
= β (MC)

1− 1
ψ = Λ.
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The present value of a consumption strip maturing at t+ j is therefore CtΛj, and the con-
dition Λ < 1 assures that the wealth-consumption ratio, given by the present discounted
value of these strips (1 − Λ)−1, is finite.

The risk-free rate in this iid setting is constant as well:

r f = − log Et

[
St+1

St

]
= − log β +

1
ψ

(
µ +

1
2
(1 − γ) σ2

)
− 1

2
γσ2,

and we can therefore rewrite the condition Λ < 1 as

log Λ = logMC − r f − 1
2

γσ2 < 0,

implying an upper bound on the risk-adjusted growth rate of consumption relative to the
risk-free rate.

4. Details of the Learning Model

In this section, we outline the details of the unobserved state model from Section 3.3
of the paper. The agent starts with a prior P (X0 = 1) = X0 and observes data Zt =

ln (Ct/Ct−1), t = 1, 2, . . .. Denote the density of the data conditional on the unobserved
state by

φi (Zt)
.
= φ (Zt | Xt = i) =

1√
2πσ (i)2

exp

(
− 1

2σ (i)2 (Zt − µ (i))2

)
,

and let p
(
Xt
) .
=
[
Xtq (1, 1) +

(
1 − Xt

)
q (2, 1)

]
the conditional expectation of Xt+1 given

Xt. The posterior probability Xt+1 = P
(
Xt+1 = 1|Zt+1) can be written recursively as

Xt+1 =
P
(
Xt+1 = 1, Zt+1 | Zt)

P (Zt+1 | Zt)
=

∑i P
(
Xt+1 = 1, Xt = i, Zt+1 | Zt)

∑i,j P (Xt+1 = j, Xt = i, Zt+1 | Zt)

=
∑2

i=1 P (Zt+1 | Xt+1 = 1) P (Xt+1 = 1 | Xt = i) P
(
Xt = i | Zt)

∑2
i,j=1 P (Zt+1 | Xt+1 = j) P (Xt+1 = j | Xt = i) P (Xt = i | Zt)

=
φ1 (Zt+1)

[
Xtq (1, 1) +

(
1 − Xt

)
q (2, 1)

]
∑2

j=1 φj (Zt+1)
[
Xtq (1, j) +

(
1 − Xt

)
q (2, j)

]
=

p
(
Xt
)

φ1 (Zt+1)

p
(
Xt
)
(φ1 (Zt+1)− φ2 (Zt+1)) + φ2 (Zt+1)

.
= h

(
Xt, Zt+1

)
.
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The conditional distribution function Q (x, y) = P
(
Xt+1 6 y|Xt = x

)
can then be writ-

ten as

Q (x, y) =
∫

z:h(x,z)6y

(
n

∑
j=1

φj (z) P
(
Xt+1 = j|Xt = x

))
dz

=
∫

z:h(x,z)6y
[p (x) (φ1 (z)− φ2 (z)) + φ2 (z)] dz.

The distribution is constructed by integrating over the likelihood of the data ln (Ct+1/Ct) =

z conditional on Xt over all consumption growth realizations z that lead to a particular
updated value Xt+1 = h

(
Xt, z

)
6 y.

The function h (x, z), for a given x, achieves its maximum at

z∗ =
σ−2

1 µ1 − σ−2
2 µ2

σ−2
1 − σ−2

2
,

irrespective of x, which is the value of z that maximizes the ratio of the likelihoods
φ1 (z) /φ2 (z). Given the shape of the function h (x, z), we can define two strictly mono-
tone functions h1

x (z) = h (x, z) for z 6 z∗ and h2
x (z) = h (x, z) for z > z∗, and then write

the distribution function as Q (x, y) = 1 for y > h (x, z∗) and

Q (x, y) =
∫ (h1

x)
−1

(y)

−∞
[p (x) (φ1 (z)− φ2 (z)) + φ2 (z)] dz +

+
∫ ∞

(h2
x)

−1
(y)

[p (x) (φ1 (z)− φ2 (z)) + φ2 (z)] dz.

We then obtain the density q (x, y) by differentiating Q (x, y) with respect to its second
argument, which yields q (x, y) = 0 for y > h (x, z∗) and

q (x, y) =
1

(h1
x)

′
(z)

[p (x) (φ1 (z)− φ2 (z)) + φ2 (z)]

∣∣∣∣∣
z=(h1

x)
−1

(y)

− 1
(h2

x)
′
(z)

[p (x) (φ1 (z)− φ2 (z)) + φ2 (z)]

∣∣∣∣∣
z=(h2

x)
−1

(y)

for y < h (x, z∗).

The dashed lines in the top row of Figure 2 depict the two conditional densities φi (z) in
the left panel, and the function h (x, z) for three values of the current state Xt = x in the
right panel, as a function of the realization of the data Zt+1 = z. The bottom row, again
depicted in dashed lines, shows the implied cdf Q (x, y) of the transition density.

The transition density q (x, y) in the benchmark specification of the model does not satisfy
the assumptions imposed in Section 2 of the main text. First, the transition density
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Figure 2. Impact of the perturbation of the learning model.
Dashed lines represent the original densities and transition functions, solid
lines represent their perturbed counterparts.

q (x, y) is zero for any y > h (x, z∗), and hence the l-step transition density ql is not
everywhere positive for any finite l. This is apparent from the top right plot of Figure 2
where the function h (x, z) (in dashed lines) does not reach one, and is caused by the fact
that the likelihood ratio φ1 (z) /φ2 (z) is bounded from above. In other words, given the
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two densities φj (z), there is no realization of consumption growth Zt+1 = z that would
allow the agent to conclude with an arbitrary degree of certainty that the current state is
Xt+1 = 1. Second, q (x, y) diverges to infinity as y ↘ 0. This indicates that the tails of
φ2 (z) are “too fat” relative to φ1 (z) and therefore extreme realizations of Zt+1 = z that
allow the agent to determine with a high degree of certainty that the state is Xt+1 = 2
are too likely to keep q (x, y) bounded as y ↘ 0.

Nevertheless, we can construct a perturbation φ̃j (z) of the data densities φj (z) such that

(a) the original full-information problem introduced in Section 3.2 of the paper is
unchanged;

(b) the perturbed data densities φ̃j (z) and the implied perturbed transition distribu-
tion Q̃ (x, ·) are arbitrarily close to the original objects φj (z) and Q (x, y), in the
sense that for any ε > 0, we can construct a perturbation φ̃j (z) such that

sup
A⊆R

∫
A

∣∣φj (z)− φ̃j (z)
∣∣ dz < ε

sup
x∈[0,1],B⊆[0,1]

∣∣∣Q (x, B)− Q̃ (x, B)
∣∣∣ < ε.

The first statement holds when the densities φ̃j (z) imply the same moments ξ (j) in
equation (27) of the main text as in the original specification. The second statement
implies that the operator K in (27) is approximated to an arbitrary degree of accuracy
for the class of bounded functions. Details on the construction of φ̃j (z) can be obtained
from the authors on request.
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