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New York University

jaroslav.borovicka@nyu.edu

Lars Peter Hansen

University of Chicago

National Bureau of Economic Research

lhansen@uchicago.edu

May 7, 2014

Preliminary draft. Please do not circulate.

Abstract

We propose an approximation method for solving dynamic stochastic general equi-

librium models in which agents are concerned about model misspecification. The

method relies on a perturbation that treats this robust concern as a first-order con-

cept that is preserved as the volatility of the shocks vanishes. The approximation has a

clear economic interpretation and generates solutions with consequences of robust pref-

erences that standard perturbation methods only capture using higher-order terms. In

particular, our method generates risk premia in the linear solution and time variation

in these risk premia and stochastic volatility effects in the second-order approximation.
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1 Introduction

Perturbation methods are an integral part of the toolkit in macroeconomic dynamic stochas-

tic general equilibrium (DSGE) modeling. These methods rely on the local smoothness of

the exact stochastic solution in the neighborhood of a non-stochastic steady state and gen-

erate an approximate solution by constructing an expansion of the policy rule, typically in

the class of polynomial functions.

The perturbation expansions naturally lead to the notion of the ‘order’ of expansion, rep-

resented by the order of the approximating polynomial. Theoretical results in perturbation

analysis specify the conditions under which the approximate solution converges to the exact

solution as the order of expansion increases. Also, different orders of expansion used in DSGE

modeling lead to particular properties of the approximate solution. Linearization techniques

(first-order expansions) are commonly used to capture smooth dynamics of macroeconomic

quantities. A second-order expansion is needed to generate nonzero risk premia, and a

third-order expansion is necessary to capture the time-variation in these premia.

The notion of convergence as the order of approximation increases is typically not very

useful for practical purposes. In nontrivial DSGE models, every additional order of approxi-

mation introduces a nontrivial additional computational burden for solution and estimation

techniques. It is therefore useful to keep the order of approximation low, while capturing

the desired qualitative and quantitative features of the model solution.

In this paper, we derive a solution technique for approximating DSGE models populated

by agents endowed with robust and recursive preferences. We utilize the observation that

a specific representation of robust utility, the constraint preference specification, exhibits

first-order risk aversion that is manifested by kinked indifference curves at certainty. Our

approach scales the robust preference parameter jointly with the volatility of the shocks to

replicate this feature. This approximation effectively shifts the order of approximation of

the preference structure one order lower relative to the rest of the model.

The mixing of the order of approximation may seem to be conceptually inconsistent

but we argue that this is not the case. The asymptotic consistency results either capture

a situation when the order of approximation increases (e.g., the Taylor’s theorem) or the

volatility of the underlying exogenous shocks declines to zero (small noise or asymptotic

expansion argument). In applications, the DSGE modeler is interested in the performance

of the given order of approximation in the stochastic equilibrium, away from the deterministic

steady state.

We specifically focus on a second-order approximation and show how to incorporate third-

order terms from the preference approximation while retaining the second-order structure.

In an example, we show that this modification captures most of the third-order dynamics
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in the model. Naturally, this result is example-specific but we argue that this result can be

expected in a broad class of models where agents are endowed with recursive preferences or

concern for robustness.

In a given order of approximation, the error of approximation can be expected to be of

higher order (as a function of the perturbation parameter) but the coefficient on the error

term can be large. Intuitively, stochastic discount factors for agents endowed with recursive

or robust preferences are designed to generate quantitatively relevant asset pricing dynamics

and thus are often the primary source of nonlinearities in the model. It is therefore desirable

to incorporate the preference structure particularly accurately. Hence our approach, which

prioritizes the order of approximation of the preference relation.

As we argued, this approximation takes a very particular stand on the characterization

of the preference structure in the vicinity of certainty. But from the perspective of DSGE

modeling, this is a mute issue, since we are fitting the model to the dynamics in the stochastic

equilibrium. The problem would only become relevant if we had data on economies as the

perturbation parameter declines to zero. While this may be important in other economic

problems, our goal is to provide a technique with a rigorous foundation that would perform

well in the stochastic equilibrium.

1.1 Related literature

Our work builds on a large volume of literature on perturbation methods. Standard tech-

niques, as in Judd (1998), Jin and Judd (2002) or Schmitt-Grohé and Uribe (2004), construct

expansions by scaling down the volatility of the exogenous shocks. The approximate solu-

tions lead to globally unstable dynamics when the shocks do not have a bounded support,

and Kim et al. (2008) or Andreasen et al. (2013) proposed so-called pruning techniques that

augment the law of motion for the state vector in order to stabilize the dynamics of simu-

lated paths. Lan and Meyer-Gohde (2013) construct a perturbation to the nonlinear moving

average representation solution that is stable as long as the first-order dynamics is stable.

In order to improve the quality of approximation in nonlinear models in which the ergodic

distribution can be far away from the deterministic steady state, some papers implemented

methods that shift the expansion point closer to the center of the ergodic distribution.

Coeurdacier et al. (2011) consider a ‘risky’ steady state that takes into account the vari-

ance adjustment generated by the curvature of the stochastic discount factor. Alternative

approaches involve methods explicitly dealing with heteroskedastic innovations as in Justini-

ano and Primiceri (2008), Malkhozov and Shamloo (2011), or Benigno et al. (2013).

Our approach is based on the series expansion method of Holmes (1995) and Lombardo

(2010). Our specific focus on nonseparable preference structures with concerns for robustness
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is linked to the risk-sensitive control problems analyzed in James (1992), Campi and James

(1996), and Anderson et al. (2012). We however proceed by expanding jointly around the

shock volatility parameter and the robustness parameter. In a similar fashion, Kogan and

Uppal (2001) expand a separable preference model around unitary risk aversion and Hansen

et al. (2007) construct an expansion of the recursive preference model around unitary in-

tertemporal elasticity of substitution.

2 Modeling framework

We consider a dynamic model with a Markov representation

xt = ψ (xt−1, wt) (1)

where wt is a k × 1 vector of serially uncorrelated shocks with wt ∼ N (0, I) and xt is an

n×1 vector of model variables. The vector xt incorporates what is often known as exogenous

and endogenous state variables as well as control variables. We will later allow for more

structure imposed on xt. The law of motion ψ is assumed to be sufficiently differentiable at

the nonstochastic steady state.

Our goal is to solve for an approximation of the law of motion ψ from a set of equilibrium

conditions. These equilibrium conditions will have a specific form dictated by the robust

preference specification that we utilize and that generalizes the standard assumption of

rational expectations. While we motivate the expansion with agents’ concern for robustness,

observational equivalence with particular specifications of recursive preferences allows us to

extend the method to recursive preference structures as well.

2.1 Robust preferences

We have in mind an economy populated by potentially different types of agents who are

concerned that the models they use to forecast the dynamics of the economy are potentially

misspecified. They treat the model (1) as an approximating or benchmark model and con-

sider stochastic deviations from this model to derive a worst-case scenario that is used as a

basis for their decisions. The worst-case model is difficult to distinguish statistically from

the approximating model, and the degree of statistical similarity between the two models

is controlled by an entropy penalty imposed on the continuation utility. The continuation

value for agent i = 1, . . . , I with a given period utility process uit can be represented as a
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solution to the minimization problem

V i
t = min

M i
t+1

uit + βiθiEt

[
M i

t+1 logM
i
t+1

]
+ βiEt

[
M i

t+1V
i
t+1

]
(2)

subject to Et

[
M i

t+1

]
= 1. Here, M i

t+1 represents the (one-period) distortion of the worst-

case model used to evaluate the future relative to the approximating model, and θi is the

entropy parameter that controls the degree of robustness. As θi → ∞, deviations from the

approximating model become prohibitively costly, and we obtain convergence to the rational

expectations framework. Hansen and Sargent (2008) provide an extensive treatment of the

robust utility problems.

It is well known that the worst-case distortion takes the form

M i
t+1 =

exp
(
− 1

θi
V i
t+1

)

Et

[
exp

(
− 1

θi
V i
t+1

)] (3)

and the preference recursion can be written as

V i
t = uit − βiθi logEt

[
exp

(
− 1

θi
V i
t+1

)]
. (4)

Taken distortions (3) as given, we can view this model as a model with heterogeneous

beliefs. Each type of agents whose concern for robustness is parameterized by θi distorts

their beliefs by the belief ratio (Radon-Nikodým derivative) M i given by equation (3). Since

the continuation values V i are determined in equilibrium, the belief heterogeneity arises here

endogenously, as different classes of agents fear different states of the world depending on

the dynamics of their continuation values.

There exist standard isomorphisms between robust and recursive preference specifica-

tions. The worst-case distortion M i
t+1 appears in the Euler equations of the robust agent

and can be treated as a component of the stochastic discount factor. Consider, for instance,

the case uit = log (C i
t) where C

i is the consumption process for agent i. Then the stochastic

discount factor takes the form

Si
t+1 = βi

(
C i

t+1

C i
t

)−1 exp
(
− 1

θi
V i
t+1

)

Et

[
exp

(
− 1

θi
V i
t+1

)] , (5)

which is the standard Epstein and Zin (1989) stochastic discount factor with unitary elasticity

of substitution if we interpret 1 + (θi)
−1 as the coefficient of relative risk aversion.

Our main goal is to argue that the nonlinearities introduced through the term M i
t+1
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are often of particular quantitative importance, and that it is desirable to treat this term

differently in a perturbation approximation. In addition, we provide a theoretically consistent

justification for our approach. The approach is based on the scaling of the robustness

parameter θi jointly with the volatility of the underlying shocks. Given that the parameter

θi only enters the model through the worst-case distortion M i
t+1, we will separate out the

dynamics of M i
t+1 from the rest of the model in the next section.

2.1.1 A static example

In order to illustrate our approximation approach, it is useful to introduce a static example.

Let the distribution of consumption be given by

logC (q) = µ− 1

2
(qσ)2 + qσW

where W is a standard normal shock and q > 0 a perturbation parameter that scales the

volatility of the shock. The term 1
2
(qσ)2 assures that logE [C (q)] = µ for every q. We

want to study agents’ preferences over different consumption distributions as the parameter

q changes.

We consider three agents who rank consumption distributions under different specifica-

tions of preferences. The first agent is endowed with power utility, the other two with two

alternative specifications of robust preferences — the multiplier preferences defined in the

dynamic case in equation (2), and constraint preferences. Appendix D provides the details

for the computations.

1. Power utility

upow =
1

1− γ
logE

[
C1−γ

]

where γ is the coefficient of relative risk aversion;

2. Multiplier preferences (a special static case of the preference specification in (2))

umult = min
M, E[M ]=1

E [M logC] + θE [M logM ] (6)

where θ is the entropy penalty parameter;

3. Constraint preferences (an alternative representation of robust preferences introduced

in Hansen and Sargent (2001) and Hansen et al. (2006))

ucon = min
M, E[M ]=1

E [M logC] s.t. E [M logM ] ≤ η (7)
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where η constraints the entropy (or expected log-likelihood ratio) of the worst-case

model relative to the approximating model.

The power utility and multiplier preference representations coincide when θ = (γ − 1)−1

and the compensation in the average consumption level µ (q) = logE [C (q)] that keeps the

agent indifferent between random consumption profiles with volatility qσ satisfies

µpow (q)− µpow (0+) = µmult (q)− µmult (0+) =
1

2
γq2σ2 =

1

2

1 + θ

θ
q
2σ2. (8)

where µ (0+) = limv→0 µ (v). The fact that the average consumption level compensation per

unit of volatility declines to zero as volatility decreases,

lim
q→0

µpow (q)− µpow (0+)

qσ
= lim

q→0

1

2

1 + θ

θ
qσ = 0,

reflects the second-order effect of risk aversion on compensation for risk. In the case of

multiplier preferences, the worst case model is given by the belief distortion

Mmult =
exp

(
−1

θ
logC

)

E
[
exp

(
−1

θ
logC

)] = exp

(
− 1

2θ2
q
2σ2 − 1

θ
qσW

)

and as q → 0, the probability distribution of the worst-case model converges to that of the

benchmark model.

On the other hand, the same calculation for the constraint preferences leads to

µcon (q)− µcon (0+) =
√
2ηqσ +

1

2
q
2σ2. (9)

and to the corresponding worst-case belief distortion

M con =
exp

(
−

√
2η
qσ

logC
)

E
[
exp

(
−

√
2η
qσ

logC
)] = exp

(
−η −

√
2ηW

)
.

The first term on the right-hand side of (9) reflects the first-order nature of the compensation

for uncertainty built into the constraint preference specification. As q → 0, the worst-case

model distortion does not vanish.

While the multiplier and constraint problems are distinct, it is possible to calibrate them

in a way that makes the indistinguishable locally. Consider setting two free parameters
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µcon (0+) and η in the following way:

µcon (0+) = µmult (0+)−
1

2

σ2

θ
(10)

η =
σ2

2θ2
.

where µmult (0+) can be chosen arbitrarily as a scaling parameter. Then

µcon (q) = µmult (0+)−
1

2

σ2

θ
+
σ2

θ
q+

1

2
q
2σ2

which implies

µcon (1) = µmult (0+) +
1

2

1 + θ

θ
σ2 = µmult (1)

d

dq
µcon (q)

∣∣∣∣
q=1

=
1 + θ

θ
σ2 =

d

dq
µcon (q)

∣∣∣∣
q=1

The absolute level of compensation for risk (the ‘risk premium’) as well as the change in this

compensation and the quantity of aggregate risk changes (the ‘price of risk’) are thus identical

for the two preference structures in the stochastic equilibrium when q = 1. Naturally, these

compensations will differ at different values of q, but it is not clear a priori which of the two

preference structures should be preferred, as we have no macroeconomic data on economies

for q 6= 1.

In other words, the entropy penalty parameter θ and the entropy constraint parameter

η do not have a direct structural interpretation. For instance, Anderson et al. (2000) and

others advocate the use of detection error probabilities as a way of disciplining the extent

of the concern of robustness. Holding the detection error probability constant will, however,

imply a parameter θ that depends on the characteristics of the stochastic environment.

Figure 1 compares the compensation for risk for the case of multiplier and constraint

preferences as a function of the perturbation parameter q. The parameters are chosen in

line with (10) so that the implications for the risk premium coincide in the stochastic equi-

librium (q = 1). The dotted lines represent the implications for the risk premium of a linear

approximation of the two preference structures. While the linear approximation of the mul-

tiplier preferences does not generate any risk premia, the situation is different for the case

of constraint preferences. We will show in the example in Section 6 that this logic also ex-

tends to higher orders of approximation. In particular, our second-order approximation will

generate asset pricing implications which are only present in the conventional perturbation

approximation of at least third order.
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Figure 1: Risk premium as a function of the perturbation parameter q for the multiplier and
constraint preference models, parameterized by θ = 1, σ = 0.02. The dotted lines represent linear
approximations of the risk premium function around q = 0. Circles capture the risk premium
evaluated at the stochastic equilibrium (q = 1) and at the linear approximation around q = 0 of
the stochastic equilibrium under the multiplier and constraint preferences.

From the comparison of the results for multiplier and constraint preferences it follows

that one possible way of choosing θ is to keep the entropy of the worst-case model relative

to the benchmark model (roughly) constant as q → 0. Utilizing equations (8) and (9) we

deduce that θ should be scaled by q, which leads to the following preference representation

umult = min
M, E[M ]=1

E [M logC] + qθE [M logM ]

We will utilize this scaling in our series expansion method below. Scaling the entropy

penalty by q effectively generates first-order uncertainty aversion effects reflected in a kink

in the indifference curves around certainty. The purpose of this paper is to incorporate these

first-order effects into the approximation techniques based on series expansion methods in a

rigorous and tractable way.

2.2 The model

The endogenous law of motion ψ in equation (1) is unknown and needs to be solved for

from a set of equilibrium conditions. We assume that we can represent these equilibrium

conditions in the form

0 = Et [g̃ (xt+1, xt, xt−1, wt+1, wt)] (11)
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where g̃ is an n × 1 vector function and the dynamics for xt is implied by (1). These

conditions include, with sufficient generality, expectational and nonexpectational equations,

including laws of motion for exogenous variables. There are well-known saddle-point stability

conditions on the system (11) that lead to a unique equilibrium of the linear approximation

(see Blanchard and Kahn (1980) or Sims (2002)) and we assume that these are satisfied.

The equilibrium conditions (11) include the Euler equations of different agents in the

model. We want to allow for heterogeneity in agents’ concerns for robustness which implies

that the model can involve multiple different M i
t+1. We achieve substantial generality by

assuming that we can write the j-th component of g̃ as

g̃j (xt+1, xt, xt−1, zt+1, zt) =M
σj

t+1g
j (xt+1, xt, xt−1, zt+1, zt) .

where σj ∈ {0, 1, . . . , I} indexes the agent whose concern for robustness is associated with

the distortion of the j-th equation, with M0
t+1 ≡ 1. In particular, all nonexpectational

equations and all equations not involving agents’ preferences will have σj = 0. System (11)

can then be written as

0 = Et [Mt+1g (xt+1, xt, xt−1, wt+1, wt)] (12)

where Mt+1 = diag
{
Mσ1

t+1, . . . ,M
σn

t+1

}
is a diagonal matrix of the belief distortions, and g is

independent of the robustness parameters θi.

3 Series expansions

We utilize the series expansion method (see Holmes (1995)) which has been widely used in

applied mathematics to derive approximate solutions to differential equations.1 Lombardo

(2010) implemented the series expansion method to construct perturbation approximations

to recursive DSGE models. This solution technique generates a recursively linear solution

for the individual orders of approximation. The dynamics of higher-order approximations

constructed using the series expansion method are globally stable as long as the first-order

dynamics are stable. This is a significant advantage over standard perturbation techniques

(Schmitt-Grohé and Uribe (2004)) where second- and higher-order dynamics are by con-

struction globally unstable, and one has to rely on additional methods to deal with this

instability.2

1McQuade (2013) provides a recent application of this method in the asset pricing literature.
2Kim et al. (2008) propose a ‘pruning’ technique which drops higher-order terms generates by iterations

on the law of motion for the state vector. Andreasen et al. (2013) provide a more systematic approach to
the pruning of higher-order solutions.
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We will discuss an explicit solution for the second-order approximation. This second-

order approximation features prominently in our asset pricing applications. We first show

how to expand all quantities that are of our interest and then, in Section 4, we incorporate

these expansions into the approximation of the set of equilibrium conditions that describe

our dynamic model.

Consider a class of models indexed by the perturbation parameter q:

xt (q) = ψ (xt−1 (q) , qwt, q) (13)

and assume that there exists a series expansion of xt around q = 0:

xt = x0t + qx1t +
1

2
q
2x2t + . . . .

The processes xjt, j = 0, 1, . . . can be viewed as derivatives of xt with respect to the pertur-

bation parameter, and their laws of motion can be inferred by differentiating (13) j times

and evaluating the derivatives at q = 0:

x0t = ψ (x0t−1, 0, 0) (14)

x1t = ψxx1t−1 + ψwwt + ψq

x2t = ψxx2t−1 + ψxx (x1t−1 ⊗ x1t−1) + 2ψxw (x1t−1 ⊗ wt) + 2ψxqx1t−1 +

+ψww (wt ⊗ wt) + 2ψwqwt + ψqq.

Appendix A provides details on the derivation and tensor algebra.

Observe that the expansion has a recursively linear structure, an inherent feature of

the series expansion method. The law of motion for x0t is deterministic and in stationary

models, x0t = x̄0 is constant. The dynamics for x2t is nonlinear only in x1t. Therefore, stable

dynamics for x1t also implies stable dynamics for x2t (and this is also true for higher-order

terms). Contrary to standard perturbation methods, series expansions of all orders will

generate stable dynamics as long as ψx is a stable matrix.

In our solution, the solution for ψ will explicitly depend on q whenever there are agents

in the model who have concerns for robustness. It is well known that in standard rational-

expectations perturbation solutions (see, for instance, Schmitt-Grohé and Uribe (2004)),

the partial derivatives of ψ with respect to q are zero. This is not the case for the robust

approximation.
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3.1 Distortions

Building on the robust control literature, Borovička and Hansen (2013) propose an expansion

of robust preferences that preserves a nontrivial worst-case distortion even as q → 0. This

expansion scales the robustness parameter θ jointly with the volatility of the shocks.

The task is to construct such an expansion of the recursion for the continuation values

V i
t and for the belief distortions M i

t . We will start with the latter. We want to focus on

the second-order expansion of the worst-case distortion and in order to do so, we will use a

third-order expansion of the continuation value.

Assume there exists a series expansion

V i
t+1 ≈ V i

0,t+1 + qV i
1,t+1 +

q
2

2
V i
2,t+1 +

q
3

6
V i
3,t+1. (15)

Our intention is to construct the expansion

M i
t+1 =

exp
(
− 1

qθi
V i
t+1 (q)

)

Et

[
exp

(
− 1

qθi
V i
t+1 (q)

)] ≈ M i
0,t+1 + qM i

1,t+1 +
q
2

2
M i

2,t+1.

Substituting in expression (15) and noting that V i
0t+1 is a deterministic term, we can approx-

imate M i
t+1 with

M i
t+1 ≈

exp
(
− 1

θi

(
V i
1,t+1 +

q

2
V i
2,t+1 +

q
2

6
V i
3,t+1

))

Et

[
exp

(
− 1

θi

(
V i
1,t+1 +

q

2
V i
2,t+1 +

q2

6
V i
3,t+1

))]

Differentiating with respect to q and evaluating at q = 0, we obtain the expansion

M i
0t+1 =

exp
(
− 1

θi
V i
1t+1

)

Et

[
exp

(
− 1

θi
V i
1t+1

)] (16)

M i
1t+1 = − 1

2θi
M i

0t+1

[
V i
2,t+1 − Et

[
M i

0t+1V
i
2,t+1

]]

M i
2,t+1 = − 1

2θi

[
M i

1,t+1V
i
2,t+1 −M i

0,t+1Et

[
M i

1,t+1V
i
2,t+1

]]
−

− 1

3θ

[
M i

0,t+1V
i
3,t+1 −M i

0,t+1Et

[
M i

0,t+1V
i
3,t+1

]]
+

+
1

2θ
M i

1,t+1Et

[
M i

0,t+1V
i
2,t+1

]
.

This expansion is distinctly different from the standard polynomial expansion famil-
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iar from the perturbation literature. First, observe that M i
0t+1 is not constant, as one

would expect for a zeroth-order term, but rather nonlinear in V i
1t+1. However, observe that

Et

[
M i

0t+1

]
= 1, and we can thus treat M i

0t+1 as a change of measure that will adjust the

distribution of shocks that are correlated with M i
0t+1. We will show that with Gaussian

shocks, we can still preserve tractability.

Further notice that Et

[
M i

1t+1

]
= Et

[
M i

2t+1

]
= 0. This has important implications for

the expansion of the product Mt+1gt+1 in expression (12). Since g0t+1 is deterministic, we

obtain

Et [M1t+1g0t+1] = Et [M2t+1g0t+1] = 0.

A second-order expansion of (12) will therefore not contain the M i
2,t+1 term and we do not

need to expand the continuation values to the third order.

This representation also reveals which terms will contribute to the individual orders of

expansion. In addition to the terms obtained in the standard perturbation method, the

first-order expansion will feature the term Et [M0t+1g1t+1] where M0 captures the first-order

dynamics of the continuation values V i, and the second-order expansion will contain terms

Et [M0,t+1g2,t+1] and Et [M1,t+1g1,t+1].

Our proposed modification of the perturbation method thus accentuates the role of the

worst-case distortions. A similar approach has been used by Ilut and Schneider (2011) and

Bianchi et al. (2013) where the dynamics of the worst-case model plays a role in the first-

order dynamics of the model. The approach taken in these papers is based on the multiple

priors preferences of Gilboa and Schmeidler (1989) generalized to a recursive framework by

Epstein and Schneider (2003) and allows fo substantially more flexibility in specifying the

belief distortions of the individual shocks. The authors overcome this problem by disciplining

the belief distortions by data. On the other hand, our approach provides a tight restriction

on the worst-case distortion of the joint distribution of shocks, with a single degree of freedom

given by the penalty parameter θ.

3.2 Continuation values

We now turn to the approximation of continuation values. Recursion (4) can be written as

V i
t (q) = uit (q)− βi (qθi) logEt

[
exp

(
− 1

qθi
V i
t+1 (q)

)]
(17)

We want to construct the first- and second-order approximation of (17) that we can use in

the expansion of the belief distortions M i
t+1 derived in Section 3.1. We are looking for the
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approximation in the form

V i
t (q) ≈ V i

0t + qV i
1t +

q
2

2
V i
2t.

The zero-th order approximation is nonstochastic and can be found immmediately by

setting q = 0:

V i
0t = (1− βi)

−1 ui0t. (18)

Higher-order terms in the expansions are derived by sucessive differentiation with respect to

q and are given by the recursions

V i
1t = ui1t − βiθi lnEt

[
exp

(
− 1

θi
V i
1t+1

)]
(19)

and

V i
2t = ui2t + βEt




exp
(
− 1

θi
V i
1t+1

)

Et

[
exp

(
− 1

θi
V i
1t+1

)]V i
2t+1


 = ui2t + βiẼ

i
t

[
V i
2t+1

]
(20)

where the Ẽi
t [·] expectation is under the distorting martingale

M i
0t+1 =

exp
(
− 1

θi
V i
1t+1

)

Et

[
exp

(
− 1

θi
V i
1t+1

)] .

We consider period utility functions of the type uit = ui (xt).
3 With this assumption, it is

natural to expect a solution for the continuation values in the form V i
t = V i (xt). Expanding

uit (q) = ui (xt (q) , q) and V i
t (q) = V i (xt (q) , q), and using the method of undetermined

coefficients in recursions (19) and (20), we obtain a set of equations for the partial derivatives

of V i in the solutions for V i
1t and V

i
2t,

V i
1t = V i

xx1t + V i
q (21)

V i
2t = V i

xx2t + V i
xx (x1t ⊗ x1t) + 2V i

xqx1t + V i
qq

where the coefficients can be derived from recursion (19) and (20) using the method of

undetermined coefficients. These coefficients depend on the (still unknown) derivatives of ψ

but we show below how to solve for all these coefficients jointly. Details of the computations

are provided in Appendix A.

The linear structure of V i
1t also has an important implication for the worst-case distortion

3Dependence on lagged values of economic variables such as in the case of habit formation models can be
treated by appropriately augmenting the vector xt with lags of these variables.
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constructed from M i
0t+1. Substituting into (16) yields

M i
0t+1 =

exp
(
− 1

θi
V i
xψwwt+1

)

Et

[
exp

(
− 1

θi
V i
xψwwt+1

)] . (22)

This implies that for a function f (wt+1) with a shock vector wt+1 ∼ N (0, I),

Et

[
M i

0t+1f (wt+1)
]
= Ẽi

t [f (wt+1)] (23)

where, under the ·̃i measure, the vector wt+1 has the following distribution:

wt+1 ∼ N

(
− 1

θi

(
V i
xψw

)′
, Ik

)
.

4 Model solution

With the expansions at hand, we can construct the approximation of the model (12) and

derive its solution. The nonlinearities in the expansion of Mt+1 motivate an iterative proce-

dure.

We will proceed as follows. Our intention is to expand the system with the function

gt+1 = g (xt+1 (q) , xt (q) , xt−1 (q) , qwt+1, qwt, q) = g0t+1 + qg1t+1 +
q
2

2
g2t+1. (24)

The zeroth-order approximation of the system is

0 = Et [M0t+1g0t+1]

Since g0t+1 is assumed to be deterministic and Et [M0t+1] = 1, this equation dictates g0t+1 =

0. This amounts to solving for the deterministic path (typically the deterministic steady

state) of the model

0 = g (x0t+1, x0t, x0t−1, 0, 0) .

4.1 First-order expansion

The first-order expansion of the system (12) is

0 = Et [M0t+1g1t+1] + Et [M1t+1g0t+1] (25)

14



where the last term on the right-hand side is zero because Et [M1t+1] = 0. We will use this

equation to solve for the coefficient matrices in the law of motion

x1t = ψxx1t−1 + ψwwt + ψq. (26)

The term M0t+1 implies that the first equation is not a linear one — it depends nonlinearly

on the continuation values V i
1t+1, which in turn depend on ψw (see equation (22)). However,

observe that the first-order expansion of (24) takes a linear form

g1t+1 = gx+x1t+1 + gxx1t + gx−x1t−1 + gw+wt+1 + gwwt + gq

Substituting in for x1t+1 using its linear low of motion, we see that M0t+1 will only have

an impact on the term (gx+ψw + gw+)wt+1. Under rational expectations, this term has a

zero mean. Under the beliefs distorted by the zero-th order contribution of the concern for

robustness M0t+1, this term will contribute a constant to equation (25).

This observation suggests we proceed as follow. Substituting into equation (25), we can

write it in terms of x1t−1, wt and wt+1. The coefficients on xt−1 and wt imply a pair of

equations

0 = (gx+ψx + gx)ψx + gx−

0 = (gx+ψx + gx)ψw + gw

which can be solved for ψx and ψw using standard methods. These coefficient matrices

will not differ from those obtained in the rational expectations model. With ψw, we can

reconstruct M0t+1 using the procedure from Section 3.2, and then solve for ψq. Define

Ẽt [wt+1] =
[
Ẽσ1

t [wt+1] . . . Ẽσn

t [wt+1]
]
=
[
Et

[
Mσ1

0t+1wt+1

]
. . . Et

[
Mσ1

0t+1wt+1

] ]

the matrix consisting of columns that represent conditional means of wt+1 under distortions

associated with individual equations of the set of equilibrium conditions (25). Then the

constant term in (25) implies a condition

0 = (gx+ψx + gx+ + gx)ψq +
[
gq + diag

(
(gx+ψw + gw+) Ẽt [wt+1]

)]

where the diag (·) operator generates a column vector from the diagonal of a matrix.

In sum, the concern for robustness contributes in the first-order dynamics with a constant

term ψq to the policy rule (26). ψq will be zero in a rational expectations model where

Ẽt [wt+1] = 0 and where gt+1 does not explicitly depend on q. We will later show how
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the drift term changes when the law of motion is represented under the agents’ worst-case

models.

This drift term also generates risk premia on cash flows which are exposed to shocks

which the agent fears. Consider a cash flow with payoff c′wt+1. The expected payoff of this

cash flow is zero but under agent’s i worst case model, this is

Ẽi
t [c

′wt+1] = − 1

θi
V i
xψwc

which reflects the covariance of the cash flow with the robust adjustment component of

the stochastic discount factor (5). Although agents behave as risk-neutral in the first-order

approximation, from the perspective of a rational expectations observer they nevertheless

require a compensation for their pessimistic beliefs about these cash flows.

4.2 Second-order expansion

Given the more involved algebra of the solution, we only outline a sketch here, with details

deferred to Appendix C. The second-order expansion of the equilibrium conditions is given

by

0 = Et [M0t+1g2t+1] + 2Et [M1t+1g1t+1] . (27)

The first term on the right-hand side is a standard second-order expansion with constant

mean distortions of the shocks in g2t+1 imposed by the known (from the solution of the

first-order approximation) worst-case distortion M0t+1. This term will lead to a standard

second-order solution, represented by systems of linear equations for the unknown second-

order derivatives of ψ.

The second term has a different structure. It contains the term g1t+1, which will only

depend on the known first-order dynamics of the law of motion ψ, and an unknown matrix

M1t+1 constructed from distortions

M i
1t+1 = − 1

2θi
M i

0t+1

[
V i
2,t+1 − Et

[
M i

0t+1V
i
2,t+1

]]

The term M i
1t+1 is the scaled innovation of V i

2t+1 under the worst-case measure. Given the

quadratic structure implied for the second-order dynamics, we can write

M i
1t+1 = − 1

2θi
M i

0t+1

(
Ai (x1t)

(
wt+1 − Ẽi

t [wt+1]
)
+Bi

(
wt+1 ⊗ wt+1 − Ẽi

t [wt+1 ⊗ wt+1]
))

(28)

where Ai (x1t) is a row vector that is a linear function of x1t and B
i is a constant row vector.

Both Ai (x1t) and B
i depend on the second-order derivatives of V i and ψ. Further observe
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that we can write

2Et [M1t+1g1t+1] = 2Et [M1t+1 (gx+ψw + gw+)wt+1]

and thus, given the second-order expansion for V i, the term Et [M1t+1g1t+1] can be solved in

closed form, since it only contains moments of wt+1 under the worst-case measure distorted

by M i
0t+1.

Given the above considerations, we can express the system (27) as a function of x1t−1,

x2t−1, wt and products of these terms, and use the method of undetermined coefficients to

solve for the unknown second-derivative matrices of ψ from the low of motion

x2t = ψxx2t−1 + ψxx (x1t−1 ⊗ x1t−1) + 2ψxw (x1t−1 ⊗ wt) + 2ψxqx1t−1 +

+ψww (wt ⊗ wt) + 2ψwqwt + ψqq.

Although these equations are linear in the second derivatives of ψ, they also depend on the

second derivatives of the continuation values V i derived in Section 3.2, which depend on the

derivatives of ψ as well. However, we show in Appendix C that there is an ordering in which

both the second derivatives of V i and ψ can be solved for sequentially, without a need for

an iterative procedure.

5 Approximating and worst-case dynamics

The approximate dynamics derived in the preceding section with wt+1 ∼ N (0, Ik) is the

solution of the economic model that incorporates agents’ concern for robustness but, at the

same time, is represented under the approximating model, which is typically associated with

the data generating process.

At the same time, it is possible to represent the law of motion for the economy under the

worst-case model perceived by the economic agent. This is useful when we want to derive

dynamic responses of the model under the agent’s subjective beliefs.

In order to do so, we will proceed somewhat differently than in Section 3.1. Although

M i
0t+1 is a strictly positive term with a unitary mean that can be used as a change of measure,

the higher-order terms are not guaranteed to be strictly positive. An alternative is to use a

second-order expansion of the value function in the non-expanded expresssion for the change

of measure:

M i
t+1 ≈ M̂ i

t+1 ≡
exp

(
− 1

θi

(
V i
1t+1 +

1
2
V i
2t+1

))

Et

[
exp

(
− 1

θi

(
V i
1t+1 +

1
2
V i
2t+1

))]
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This expression is strictly positive and has a unitary mean.4 Also, since V i
1t+1 is linear in

wt+1 and V i
2t+1 is quadratic, we can write it as

M̂ i
t+1 =

exp

((
Âi

0 + Âi
1x1t

)′
wt+1 + B̂i (wt+1 ⊗ wt+1)

)

Et

[
exp

((
Âi

0 + Âi
1x1t

)′
wt+1 + B̂i (wt+1 ⊗ wt+1)

)]

and, utilizing formula (33), we deduce that under the distorted measure ·̂i, the shock wt+1

is distributed as wt+1 ∼ N
(
µ̂i
0 + µ̂i

1x1t, σ̂
i (σ̂i)

′)
with

σ̂i
(
σ̂i
)′

=
(
Ik − sym

[
matk,k

(
2B̂i
)])−1

(29)

µ̂i
0 + µ̂i

1x1t = σ̂i
(
σ̂i
)′ (

Âi
0 + Âi

1x1t

)
(30)

The approximate distortion M̂ i
t+1 therefore induces a time-varying change in the drift of

the shock that is a linear function of the state vector x1t, and a constant adjustment in its

volatility. Further, we can write wt+1 = µ̂i
0 + µ̂i

1x1t + σ̂iŵt+1 where ŵt+1 is a multivariate

standard normal shock under ·̂i, which implies the following dynamics for the solution of the

model under the worst-case beliefs of agent i:

x0t = ψ (x0t−1, 0) (31)

x1t = ψxx1t−1 + ψwŵ
i
t + ψwµ̂

i
0 + ψq

x2t = ψxx2t−1 +
[
ψxx + 2ψxw

(
In ⊗ µ̂i

1

)
+ ψww

(
µ̂i
1 ⊗ µ̂i

1

)]
(x1t−1 ⊗ x1t−1) +

+

[
2ψxw

(
In ⊗ σ̂i

)
+ ψww

((
µ̂i
1

)
⊗ σ̂i +

[
σ̂i ⊗

(
µ̂i
1

)
·j

]k
i=1

)] (
x1t−1 ⊗ ŵi

t

)
+

+
[
2ψxq + 2ψxw

(
In ⊗ µ̂i

0

)
+ 2ψwqµ̂

i
1 + ψww

(
µ̂i
0 ⊗ µ̂i

1 + µ̂i
1 ⊗ µ̂i

0

)]
x1t−1 +

+ψww

(
σ̂i ⊗ σ̂i

) (
ŵi

t ⊗ ŵi
t

)
+
[
2ψwqσ̂

i + ψww

(
µ̂i
0 ⊗ σ̂i + σ̂i ⊗ µ̂i

0

)]
ŵi

t +

+ψqq + ψww

(
µ̂i
0 ⊗ µ̂i

0

)
+ 2ψwqµ̂

i
0

The change of measure thus generates a rather sophisticated nonlinear impact on the dynam-

ics of the model. First, observe that the first-order dynamics feared by the agent need not be

stationary even if the approximating model is, as the autoregressive coefficient changes from

ψx to ψx + ψwµ̂
i
1. The autoregressive coefficient of the second derivative x2t is not impacted

4Moreover, this expression corresponds to the first-order logarithmic expansion of M i

t+1, compensated
to make its mean equal to one. We choose this first-order expansion as an appropriate one here, since
the second-order term in the expansion of M i

t+1 does not contribute to the solution of the second-order
approximation of the model.
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in this second-order approximation but the impact of the first-order terms on x2t changes.

Also, although the volatility of the shock wt+1 is only distorted by a constant transformation

(29), the implied change in the conditional volatility of the model is more complex because

of the ‘stochastic volatility’ term x1t−1 ⊗ ŵi
t, which is now scaled by 2ψxw (In ⊗ σ̂i).

5.1 Shock elasticities and nonlinear impulse response functions

The macroeconomics literature uses impulse response functions as a standard tool to evaluate

the dynamics of equilibrium models. In a (log)linear VAR framework, the impulse responses

are functions of the horizons of the response but are independent of the state at the time

of the impact of the shock, the future shock distribution and the magnitude and the sign

of the initial shock. In a nonlinear framework, impulse responses generally depend on all

these features of the model, and one has to be specific about the type of impulse response

experiment conducted in the model evaluation exercise, see Gallant et al. (1993), Koop et al.

(1996), or Gourieroux and Jasiak (2005).

Borovička and Hansen (2013) propose a related method that closely links the macroeco-

nomics and asset pricing literatures. The experiment is to compute the sensitivity of expected

cash flows and expected returns associated with these cash flows to marginal changes in the

exposure of the cash flows to economic shocks. Consider again the model dynamics (1)

xt = ψ (xt−1, wt)

This model will typically be assumed to be stationary. However, our objects of interest —

cash flows and stochastic discount factors — are inherently nonstationary and grow or decay

over time. We therefore use the model for xt as a way to model stationary increments of

processes called additive functionals:

Yt = Y0 +

t−1∑

s=0

κ (xs, ws+1) .

A frequent example of the increment to the additive functional is

κ (xs, ws+1) = β (xs) + α (xs) · ws+1

where the state-dependence of α (xs) represents a model of stochastic volatility. Examples of

additive functionals include logarithms of cash flows and stochastic discount factors. Because

asset pricing modeling requires to compute conditional expectations of levels of variables

rather than logs, we also define a multiplicative functional Mt = exp (Yt).
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A typical impulse response experiment considers an impulse which consists of a mean

shift in the distribution of the initial shock. We proceed differently and define a perturbation

in the direction αh (x0) as

logH1 (r) = rαh (x0) · w1 −
1

2
r
2 |αh (x0)|2

where r is an auxiliary parameter and the direction vector is normalized so that E
[
|αh (x0)|2

]
=

1. We use H1 (r) to perturb the dynamics of the original multiplicative functional Mt in pe-

riod 1. Specifically, we construct the perturbed dynamics

logMt + logH1 (r)

and compare the expectation ofMt with the expecattion ofMtH1 (r) for small perturbations

by computing the derivative

εm (x, t) =
d

dr
logE [MtH1 (r) | x0 = x]

∣∣∣∣
r=0

.

The state-dependent function εm (x, t) is the shock elasticitiy function for the multiplicative

functional Mt.

Observe that H1 (r) has mean one, so that perturbing Mt by H1 (r) does not produce

any direct mean shifts through the mean of H1 (r). The effect on the conditional expec-

tation, captured by the shock elasticity function, rather comes from marginally increasing

the volatility (exposure) of Mt through H1 (r) in the direction of shocks that is captured by

αh (x0).

This experiment corresponds more to the tradition of the asset pricing literature that

compares risk premia on assets with different exposures to risk. However, it is straightforward

to show that in the case of loglinear Gaussian frameworks, the shock elasticity exactly

corresponds to the impulse response function for Yt.

Borovička and Hansen (2013) show that when the law of motion ψ for the state vector

has the functional form generated by the series expansion method, closed form solutions for

the shock elasticities exist, including the distribution of the shock elasticity function under

the stationary distribution of the state vector. This holds both under the approximating

model as well as under the worst case model given by (31). Evaluating the approximate

solutions using the shock elasticity functions is therefore straightforward in our framework.
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6 A quantitative example

Performance of approximation methods is typically shown on examples of simple general

equilibrium models, like different versions of the textbook real business cycle model. But

these simples models have virtually no effects beyond second order. We therefore compare the

performance of the robust second-order approximation against a third-order approximation

of the model by Bidder and Smith (2012). Bidder and Smith (2012) solve their model using

a standard smooth third-order perturbation. We show that our second-order expansion

generates quantity responses that are very close to those produced by Bidder and Smith

(2012). We also analyze the pricing implications of this model and argue that the prices of

risk in this model are two low to produce quantitatively relevant premia on risky assets.

6.1 The model

The model consists of a utility-maximizing household that exhibits a concern for robustness

and an aggregate production technology with capital accumulation that is subject to convex

adjustment costs. The technology is driven by a productivity shock with a permanent

component and stochastic volatility. Given the structure of the economy, we can find the

equilibrium allocation by solving an associated planner’s problem.

The representative household has preferences over consumption Ct and labor Lt and its

concern for robustness is expressed by a recursion for the continuation value (4), with the

period utility function

ut = log (Ct − ξCt−1 − η0L
η1
t Jt)

where Jt = Cν
t J

1−ν
t−1 is a Jaimovich and Rebelo (2009) adjustment factor that adjusts the

disutility from labor to keep the preferences consistent with a balanced growth path. The

technology by an exogenous labor augmenting productivity shock

zt+1 = Λz + zt + evt+1 σ̄zεz,t+1

vt+1 = ρvt + σ̄vεv,t+1

and produces output using the Cobb-Douglas production function

Yt = (htKt)
α (eztLt)

1−α

where ht represents the utilization rate of capital in place. The stock of capital is accumulated
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according to

Kt+1 = (1− δ (ht))Kt + It

(
1− κI

2

(
It
It−1

− eΛz

)2
)

where the second term on the right-hand side represents second-order adjustment costs and

the function δ (ht) is the utilization-dependent depreciation rate

δ (ht) = δ0 +
δ1

1 + δ2
h1+δ2
t .

Consumption and investment are restricted by the aggregate feasibility constraint

Yt = Ct + It.

6.2 Stochastic discount factor and belief distortions

We focus closely on the dynamics of the stochastic discount factor of the representative

household. The one-period stochastic discount factor consists of two components

St+1 = S̃t+1Mt+1

where S̃t+1 is the discount ratio of marginal utilities of consumption

S̃t+1 = β
∂ut+1/∂Ct+1

∂ut/∂Ct

and Mt+1 is the belief distortion generated by the worst-case model and represented by the

exponential tilt (3).

6.3 Comparison of results

Bidder and Smith (2012) focus on the quantity dynamics under the approximating and the

worst-case model, where the former is associated with the data-generating process. Figure 2

plots nonlinear impulse responses from the Bidder and Smith (2012) paper in blue and

compares them to our shock elasticities in red. While Bidder and Smith (2012) only plot

the average impulse response, we plot both the average shock elasticities as well as their

quantiles under the stationary distribution of the state vector.

The results show that the performance of the robust approximation effectively corre-

sponds to that of a standard approximation with an order of approximation higher by one.

This is particularly pronounced for the responses to the volatility shocks. Under a standard

second-order approximation, the responses to volatility shocks would be zero by construc-
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Figure 2: A comparison of shock elasticities computed using the second-order robust preference
expansion method from this paper with the results from Bidder and Smith (2012). Top four graphs
present responses to the technology shock, bottom four graphs responses to the volatility shock.
Shock elasticities computed under the approximating model.
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Figure 3: A comparison of shock elasticities computed using the second-order robust preference
expansion method from this paper with the results from Bidder and Smith (2012). Top four
graphs present responses to the technology shock, bottom four graphs responses to the volatility
shock. Shock elasticities computed under the worst-case model, and the mean and quantiles of the
responses are conditioned on the stationary distribution under the worst-case model.
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Figure 4: Shock-price elasticities: Shock-price elasticities for the technology shock (in red) and
volatility shock (in blue). The upper two rows correspond to the robust agent, and are calculated
by taking just the consumption part of the stochastic discount factor (without the distortion) and
computing the shock-price elasticities under the worst-case model. The bottom two rows correspond
to the shock-price elasticities for an agent who has the same equilibrium consumption process but
his beliefs are not distorted toward the worst-case model. In effect, all shock-price elasticities here
are computing using the same SDF, upper two rows under the worst-case model, bottom two rows
under the approximating model.
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tion. The robust preference expansion method pins down, in a second-order approximation,

the volatility responses computed from a third order approximation.

Figure 3 shows that the approximation is good not only under the approximating model

but also under the worst-case model of the robust agent.

With the belief distortion at hand, we can also conduct pricing exercises. For instance,

the ratio of marginal utilities of consumption, S̃, corresponds to an equilibrium stochastic

discount factor of a non-robust household who faces the same consumption and volatility pro-

cesses as the robust household. The whole product, St+1 = S̃t+1Mt+1 is then the stochastic

discount factor that the robust household is facing.

Figure 4 plots the shock-price elasticities (responses of expected returns to structural

shocks). In line with our previous discussion, it is particularly the volatility shocks that the

worst-case accentuates significantly — while for the non-robust agent, the volatility shock

plays a negligible role in pricing (bottom four graphs), the shock carries a much higher price

of risk (as measured by the shock-price elasticity) when robust concern is taken into account

(top four graphs).

7 Concluding thoughts

In this paper, we showed that a judicious choice of the method for the approximation of the

stochastic discount factor can decrease the order of approximation needed to obtain accurate

solutions for relevant features of the model of interest. In particular, we consider models

in which agents have a concern for robustness, reflected in the slanting of the subjective

probability distribution toward worse outcomes. This probability distortion is a function of

a parameter that controls the degree of robustness. We show how to derive a generalization

of the series expansion method that scales this parameter jointly with the volatility of the

shock. The method allows for multiple endogenously determined belief distortions, resulting

in heterogeneous worst-case models of individual agnets. The resulting nonlinearities in the

approximate equilibrium conditions can be handled analytically, using methods similar to

those for perturbation solutions of rational expectations models.

We test the performance of the method by comparing nonlinear responses to economic

shocks in an equilibrium model of Bidder and Smith (2012), who use a third-order pertur-

bation approximation to capture the dynamic effects of shocks to stochastic volatility. We

show that our method performs well in capturing responses to shocks both to the level as

well as the volatility of the productivity process, using only a second-order approximation.

The responses are close to those in Bidder and Smith (2012) both for the dynamics under

the approximating as well as the worst-case model. The proximity of the volatility responses
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to those generated by the third-order approximation is particularly remarkable, as a con-

ventional perturbation approximation method computed to the second order would lead to

responses to a volatility shock that are exactly zero — there would be no stochastic volatility

effects whatsoever.

In addition, our method has the advantage that it generates recursively linear second-

order dynamics which we can use to compute the dynamic responses analytically. To do so,

we use the concept of shock elasticities that we developed in our earlier work in Borovička

and Hansen (2013). The shock elasticities measure the sensitivity of expected cash-flows

(and expected returns) to the exposure of these cash-flows to economic shocks. Analytical

tractability implies that in order to compute the responses, we do not need to rely on

simulations of the equilibrium state vector and on techniques that discipline the unstable

simulated trajectories.

While the method performs remarkably well for the analyzed example, it is important

to understand the asymmetry in the approximation technique. It is based on the idea

that the crucial nonlinearity of the model arises from the dynamics of the belief distortion

in the stochastic discount factor, and therefore our method of approximation will signif-

icantly improve the solution of the whole model. For instance, nonlinearities arising from

continuation-value components in recursive utility stochastic discount factors can be handled

analogously but if the source of nonlinearity comes from other components of the model, the

method may likely perform closer to the standard perturbation approximation.

The functional form of the solution that we generate can also be exploited advantageously

in estimation techniques. Aruoba et al. (2012) consider such second-order recursively linear

dynamics to develop tractable estimation techniques that explore nonlinearities in the solu-

tions of DSGE models. Further work in this direction is likely to generate new promising

insights.
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Appendix

A Preliminary algebra

In this appendix, we provide some details on some algebraic operations used in the paper.algebraic

rules of tensor algebra.

A.1 Definitions

To simplify work with Kronecker products, we define two operators vec and matm,n. For an m×n

matrix H, vec (H) produces a column vector of length mn created by stacking the columns of H:

h(j−1)m+i = [vec(H)](j−1)m+i = Hij.

For a vector (column or row) h of length mn, matm,n (h) produces an m× n matrix H created by

‘columnizing’ the vector:

Hij = [matm,n(h)]ij = h(j−1)m+i.

We drop the m,n subindex if the dimensions of the resulting matrix are obvious from the context.

For a square matrix A, define the sym operator as

sym (A) =
1

2

(
A+A′) .

Apart from the standard operations with Kronecker products, notice that the following is true. For

a row vector H1×nk and column vectors Xn×1 and Wn×1

H (X ⊗W ) = X ′ [matk,n (H)]′W

and for a matrix An×k, we have

X ′AW =
(
vecA′)′ (X ⊗W ) . (32)

Also, for An×n, Xn×1, Kk×1, we have

(AX)⊗K = (A⊗K)X

K ⊗ (AX) = (K ⊗A)X.

Finally, for column vectors Xn×1 and Wk×1,

(AX)⊗ (BW ) = (A⊗B) (X ⊗W )
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and

(BW )⊗ (AX) = [B ⊗A•j ]
n
j=1 (X ⊗W )

where

[B ⊗A•j ]
n
j=1 = [B ⊗A•1 B ⊗A•2 . . . B ⊗A•n] .

A.2 Concise notation for derivatives

Consider a vector function f (x,w) where x and w are column vectors of length m and n, respec-

tively. The first-derivative matrix fi where i = x,w is constructed as follows. The k-th row [fi]k•

corresponds to the derivative of the k-th component of f

[fi (x,w)]k• =
∂f (k)

∂i′
(x,w) .

Similarly, the second-derivative matrix is the matrix of vectorized and stacked Hessians of

individual components with k-th row

[fij (x,w)]k• =

(
vec

∂2f (k)

∂j∂i′
(x,w)

)′

.

It follows from formula (32) that, for example,

x′

(
∂2f (k)

∂x∂w′ (x,w)

)
w =

(
vec

∂2f (k)

∂w∂x′
(x,w)

)′

(x⊗ w) = [fxw (x,w)]k• (x⊗ w) .

A.3 Conditional expectations

Let wt+1 ∼ N (0, Ik). Notice that a complete-the squares argument implies that, for a 1× k vector

A, a 1× k2 vector B, and a scalar function f (w),

Et [exp (B (wt+1 ⊗ wt+1) +Awt+1) f (wt+1)] = (33)

= Et

[
exp

(
1

2
w′
t+1 (matk,k (2B))wt+1 +Awt+1

)
f (wt+1)

]
=

= |Ik − sym [matk,k (2B)]|−1/2 exp

(
1

2
A (Ik − sym [matk,k (2B)])−1A′

)
· Ẽt [f (wt+1)]

where under the ·̃ measure

wt+1 ∼ N
(
(Ik − sym [matk,k (2B)])−1A′, (Ik − sym [matk,k (2B)])−1

)
. (34)
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B Series expansions

The series expansion method analyzes a small-noise approximation of the model xt = ψ (xt−1, wt)

where wt ∼ N (0, Ik) and xt is an n × 1 Markov state around a deterministic path. We consider a

class of models

xt (q) = ψ (xt−1 (q) , qwt, q)

as a function of the perturbation parameter q. Repeated differentiation with respect to q and

evaluation of the derivatives at q = 0 yields a sequence of dynamic models (here, up to the second

order)

x0t = ψ (x0t−1, 0) (35)

x1t = ψxx1t−1 + ψwwt + ψq

x2t = ψxx2t−1 + ψxx (x1t−1 ⊗ x1t−1) + 2ψxw (x1t−1 ⊗ wt) + 2ψxqx1t−1 +

+ψww (wt ⊗ wt) + 2ψwqwt + ψqq

where

xt (q) ≈ x0t + qx1t +
q
2

2
x2t

and xjt can thus be interpreted as derivatives of the proces xt with respect to q. The matrices ψi and

ψij are first- and second-order derivatives of ψ, constructed using the notation from Appendix A.2.

Observe that the approximate dynamics up to j-th order is a Markov system with a (j + 1)n

dimensional state vector. xjt = (x′0t, x
′
1t, . . . , xjt)

′.

Functions of the state vector f (xt) are approximated in the same way. For instance, agent’s i

period utility function uit = ui (xt) yields the approximation

ui0t = ui (x0t)

ui1t = uixx1t + uiq

ui2t = uixx2t + uixx (x1t ⊗ x1t) + 2uixqx1t + uiqq

Here, we preserve the possibility of an explicit dependence of ui on q. Although in applications the

partial derivatives of ui with respect to q will almost always be zero, this will no longer be true for

endogenously determined quantities in our framework. Also note that the j-th order approximation

approximation preserves the Markov property with state vector xjt .

C Approximate solution

In this section of the appendix, we provide details on the solution of the model (12). We start with

the construction of the continuation values and worst-case belief distortions, and then discuss the

solution for the equilibrium conditions.
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C.1 Continuation values and worst-case distortions

In Section 2.1, we derived recursion (4) for the continuation value of an agent with a concern for

robustness, which suggests the expansion

V i
t (q) = uit (q)− βiθi logEt

[
exp

(
− 1

θi
V i
t+1 (q)

)]
.

Repeated differentiation of

V i
t (q) ≈ V i

0t + qV i
1t +

q
2

2
V i
2t

leads to the set of recursive formulas

V i
0t = ui0t + βV i

0t+1

V i
1t = ui1t − βiθi logEt

[
exp

(
− 1

θi
V i
1t+1

)]
(36)

V i
2t = ui2t + βiEt




exp
(
− 1

θi
V i
1t+1

)

Et

[
exp

(
− 1

θi
V i
1t+1

)]V i
2t+1


 . (37)

Since uit = ui (xt), we can make the guess that V i
t (q) = V i (xt (q) , q) which leads to the following

expressions for the derivatives of V i
t :

V i
1t = V i

xx1t + V i
q

V i
2t = V i

xx2t + V i
xx (x1t ⊗ x1t) + 2V i

xqx1t + V i
qq

where we ignored the expression for the deterministic term V i
0t as it is irrelevant for our calculations.

We plug these expressions into the recursion (36), substitute for x1t+1 from the law of motion

(35), solve for the log normal formulas and compare coefficients on x1t and the constant term to

obtain solutions for V i
x and V i

q

V i
x = uix (In − βiψx)

−1 (38)

V i
q = (1− βi)

−1

[
uiq + βiV

i
xψq − βi

1

2θi
V i
xψwψ

′
w

(
V i
x

)′
]
.

With this solution, we can also solve for the order zero distortion for the worst-case model of

agent i in expression (16).

M i
0t+1 =

exp
(
− 1

θi
V i
1t+1

)

Et

[
exp

(
− 1

θi
V i
1t+1

)] =
exp

(
− 1

θi
V i
xψwwt+1

)

Et

[
exp

(
− 1

θi
V i
xψwwt+1

)] (39)

where ψw will be determined later. This change of measure that imposes a new drift on wt+1 under
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the worst-case model, so that wt+1 ∼ N
(
− 1

θi

(
V i
xψw

)′
, Ik

)
, i.e.,

Ẽi
t [wt+1] = − 1

θi

(
V i
xψw

)′
(40)

Ẽi
t [wt+1 ⊗wt+1] = Ẽi

t

[
vec
(
wt+1w

′
t+1

)]
= vec

(
Ṽ ar

i

t (wt+1) + Ẽi
t [wt+1] Ẽ

i
t

[
w′
t+1

])
=

= vec

(
Ik +

1

(θi)
2

(
V i
xψw

)′ (
V i
xψw

))

Equation (37) can therefore be written as

V i
2t = ui2t + βiẼ

i
t

[
V i
2t+1

]
(41)

where Ẽi
t [·] is the expectation induced by the distortion M i

0t+1.

Substituting the expansions into equation (41) yields

V i
xx2t + V i

xx (x1t ⊗ x1t) + 2V i
xqx1t + V i

qq = uixx2t + uixx (x1t ⊗ x1t) + 2uixqx1t + uiqq +

+βiẼ
i
t

[
V i
xx2t+1 + V i

xx (x1t+1 ⊗ x1t+1) + 2V i
xqx1t+1 + V i

qq

]

The individual terms in the expectations are equal to

Ẽi
t

[
V i
xx2t+1

]
= V i

xψxx2t + V i
xψxx (x1t ⊗ x1t) +

(
2V i

xψxq + Ẽi
t

[
w′
t+1

] (
matk,n

(
2V i

xψxw

)))
x1t +

+V i
xψqq + V i

xψwwẼ
i
t [wt+1 ⊗ wt+1] + 2V i

xψwqẼ
i
t [wt+1]

Ẽi
t

[
V i
xx (x1t+1 ⊗ x1t+1)

]
= V i

xx (ψx ⊗ ψx) (x1t ⊗ x1t) + V i
xx (ψx ⊗ ψq + ψq ⊗ ψx) x1t +

+Ẽi
t

[
w′
t+1

] [
matk,n

(
V i
xx (ψx ⊗ ψw)

)
+
(
matn,k

(
V i
xx (ψw ⊗ ψx)

))′]
x1t +

+V i
xx

[
(ψq ⊗ ψq) + (ψw ⊗ ψw) Ẽ

i
t [wt+1 ⊗ wt+1] + (ψw ⊗ ψq + ψq ⊗ ψw) Ẽ

i
t [wt+1]

]

Ẽi
t

[
2V i

xqx1t+1

]
= 2V i

xqψxx1t + 2V i
xq

(
ψwẼ

i
t [wt+1] + ψq

)

Ẽi
t

[
V i
qq

]
= V i

qq

Now we can compare coefficients on x2t, x1t⊗x1t, x1t and the constant term in V i
2t. The coefficient

on x2t yields the same equation as (38), and the remaining coefficients yield the following equations
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for V i
xx, V

i
xq and V i

qq:

V i
xx =

[
uixx + βiV

i
xψxx

]
[In2 − βi (ψx ⊗ ψx)]

−1 (42)

V i
xq [In − βiψx] = uixq + βi

(
V i
xψxq +

1

2
V i
xx (ψx ⊗ ψq + ψq ⊗ ψx)

)
+

−βi
1

2θi

(
V i
xψw

) [
matk,n

(
2V i

xψxw + V i
xx (ψx ⊗ ψw)

)
+
(
matn,k

(
V i
xx (ψw ⊗ ψx)

))′]

V i
qq (1− βi) = uiqq + βi

(
V i
xψqq + V i

xx (ψq ⊗ ψq) + 2V i
xqψq

)
+

−βi
1

θi

(
2V i

xψwq + V i
xx (ψw ⊗ ψq + ψq ⊗ ψw) + 2V i

xqψw

) (
V i
xψw

)′
+

+βi
(
V i
xψww + V i

xx (ψw ⊗ ψw)
)
vec

(
Ik +

1

(θi)
2

(
V i
xψw

)′ (
V i
xψw

))

These expressions depend on the unknown derivatives of ψ but we show below how to proceed in

order to in order to construct these terms sequentially.

C.2 Approximation of equilibrium conditions

We now approximate the system of equilibrium conditions

Et [Mt+1g (xt+1, xt, xt−1, wt+1, wt)] (43)

where Mt+1 =
{
Mσ1

t+1, . . .M
σn

t+1

}
is a diagonal matrix of belief distortions and σj ∈ {0, 1, . . . , I}

index belief distortions of agents i ∈ {1, . . . , I} with M0
t+1 ≡ 1. These belief distortions are given

by expression (39).

It will be useful to define

Ẽt [wt+1] =
[
Ẽσ1

t [wt+1] . . . Ẽσn

t [wt+1]
]
=

=
[
Et

[
Mσ1

0t+1wt+1

]
. . . Et

[
Mσ1

0t+1wt+1

] ]

the matrix consisting of columns that represent conditional means of wt+1 under distortions asso-

ciated with individual equations of the set of equilibrium conditions 0 = Et [M0t+1g1t+1]. These

individual columns are constructed in equation (40). We also define accordingly the matrix of

second-moment vectors

Ẽt [wt+1 ⊗ wt+1] =
[
Ẽσ1

t [wt+1 ⊗ wt+1] . . . Ẽ
σn

t [wt+1 ⊗ wt+1]
]
.

Expanding the set of equilibrium conditions (43) yields

0 = Et [M0t+1g0t+1] = g0t+1

0 = Et [M0t+1g1t+1] + Et [M1t+1g0t+1] = Et [M0t+1g1t+1]

0 = Et [M0t+1g2t+1] + 2Et [M1t+1g1t+1] + Et [M2t+1g0t+1] = Et [M0t+1g2t+1] + 2Et [M1t+1g1t+1]
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and the second equalities in each line use the facts that g0t+1 is deterministic, Et [M0t+1] = In

and Et [M1t+1] = Et [M1t+1] = 0. The first equation is a system of nonlinear equations for the

deterministic path around which we approximate the model, typically a constant steady state.

We will deal with the remaining pair of equations. Notice that the diagonal elements of M0t+1

are given (with the appropriate reindexing by σj) by (39) and depend on the unknown derivative

ψw, while the elements of M1t+1 represented in (16) depend on the second-order derivatives of ψ.

C.2.1 First-order equations

For the first-order derivative of the equilibrium conditions, we have

0 = Et [M0t+1g1t+1] (44)

The first-order expansion of g1 is

g1t+1 = gx+x1t+1 + gxx1t + gx−x1t−1 + gw+wt+1 + gwwt + gq =

= [(gx+ψx + gx)ψx + gx−]x1t−1 + [(gx+ψx + gx)ψw + gw]wt +

+(gx+ψx + gx+ + gx)ψq + gq + (gx+ψw + gw+)wt+1

where symbols x+, x, x−, w+, w, q represent partial derivatives with respect to xt+1, xt, xt−1, wt+1, wt

and q, respectively Equation (44) thus is a system of linear second-order stochastic difference

equations. There are well-known results that discuss the conditions under which there exists a

unique stable solution to this system. We assume that such conditions are satisfied. Comparing

coefficients on x1t−1, wt and the constant term implies the set of equations

0 = (gx+ψx + gx)ψx + gx− (45)

0 = (gx+ψx + gx)ψw + gw

0 = (gx+ψx + gx+ + gx)
i ψq + (gq)

i + (gx+ψw + gw+)
i Ẽi

t [wt+1] i = 1, . . . , n

where the i superindices denote i-th equation. The first equation is a quadratic matrix equation

who can be solved for the stable solution using standard methods like the qz-decomposition (Sims

(2002)). The second equation then implies a solution fow ψw

ψw = − (gx+ψx + gx)
−1 gw.

The important observation is the fact that equations for ψx and ψw do not depend on the belief

distortion matrix Ẽt [wt+1], and thus their solution do not differ from a rational expectations solu-

tion. We can therefore solve for ψw, then construct the belief distortion matrix M0t+1 using (39)
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and finally compute the constant term

ψq = − (gx+ψx + gx+ + gx)
−1
[
gq + diag

(
(gx+ψw + gw+) Ẽt [wt+1]

)]

where the diag (·) operator generates a column vector from the diagonal of a matrix.

C.2.2 Second-order equations

Now we use equation

0 = Et [M0t+1g2t+1] + 2Et [M1t+1g1t+1] (46)

to solve for the second-order dynamics given by x2t−1. The algorithm is analogous to that for the

first-order dynamics. Plugging in expansions of g1t+1 and g2t+1, and substituting in the laws of

motion (35) yields a set of equations in x1t−1, x2t−1 and wt. Then we can compare coefficients on

terms x1t−1, x1t−1 ⊗ x1t−1, x1t−1 ⊗ wt, wt, wt ⊗ wt and the constant term to obtain solutions for

ψxx, ψxw, ψxq, ψww, ψwq and ψqq. We deal with the two terms in (46) separately.

First term First compute Et [M0t+1g2t+1]. The second-order derivative of gt+1 can be written

as

g2t+1 = gx+x2t+1 + gxx2t + gx−x2t−1 +
∑

i,j

gzizj (zi ⊗ zj)

where zi, zj ∈ {x1t+1, x1t, x1t−1, wt+1, q} and zi = q in the Kronecker product represents 1. Symme-

try also implies that gzizj (zi ⊗ zj) = gzjzi (zj ⊗ zi). We need to compute the expectation of g2t+1,

taking into account the distorted expectation of wt+1 under M0t+1, and substitute repeatedly to

obtain the expression as a function of x1t−1, x2t−1 and wt. As in the previous writeup, consider

coefficients on individual terms. The following expansions of Kronecker products are useful:

x1t+1 ⊗ x1t+1 = (ψx ⊗ In) (x1t ⊗ x1t+1) +
[
ψw ⊗ (In)·j

]n
j=1

(x1t+1 ⊗ wt+1) + (ψq ⊗ In)x1t+1

x1t ⊗ x1t+1 = (In ⊗ ψx) (x1t ⊗ x1t) + (In ⊗ ψw) (x1t ⊗ wt+1) + (In ⊗ ψq)x1t

x1t+1 ⊗ wt+1 = (ψx ⊗ Ik) (x1t ⊗ wt+1) + (ψw ⊗ Ik) (wt+1 ⊗ wt+1) + (ψq ⊗ Ik)wt+1

In order to simplify notation for the intermediate steps, denote Γx2+, Γx2 and Γx2− the coeffi-

cients on x2t+1, x2t and x2t−1, and Γzizj the coefficients on zi ⊗ zj with notation as above. These

coefficients include terms that are the result of substitution for terms defined earlier.We denote in

red the unknown coefficients that we need to solve for.
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Coefficients on xt+1 terms:

[x2t+1] : Γx2+ = gx+

[x1t+1 ⊗ x1t+1] : Γx+x+ = gx+x+

[x1t+1 ⊗ wt+1] : Γx+w+ = 2gx+w+ + Γx+x+

[
ψw ⊗ (In)·j

]n
j=1

[x1t+1 ⊗ wt] : Γx+w = 2gx+w

[x1t+1] : Γx+q = 2gx+q + Γx+x+ (ψq ⊗ In)

Coefficients on xt terms:

[x2t] : Γx2 = gx + Γx2+ψx

[x1t ⊗ x1t+1] : Γxx+ = 2gxx+ + Γx+x+ (ψx ⊗ In)

[x1t ⊗ x1t] : Γxx = gxx + Γx2+ψxx + Γxx+ (In ⊗ ψx)

[x1t ⊗wt+1] : Γxw+ = 2gxw+ + 2Γx2+ψxw + Γx+w+ (ψx ⊗ Ik) + Γxx+ (In ⊗ ψw)

[x1t ⊗ wt] : Γxw = 2gxw + Γx+w (ψx ⊗ Ik) + Γxx

[
ψw ⊗ (In)·j

]n
j=1

[x1t] : Γxq = 2gxq + 2Γx2+ψxq + Γx+qψx + Γxx+ (In ⊗ ψq) + Γxx (ψq ⊗ In)

Coefficients on xt−1 terms:

[x2t−1] : Γx2− = gx− + Γx2ψx

[x1t−1 ⊗ x1t+1] : Γx−x+ = 2gx−x+

[x1t−1 ⊗ x1t] : Γx−x = 2gx−x + Γxx (ψx ⊗ In) + Γx−x+ (In ⊗ ψx)

[x1t−1 ⊗ x1t−1] : Γx−x− = gx−x− + Γx2ψxx + Γx−x (In ⊗ ψx)

[x1t−1 ⊗ wt+1] : Γx−w+ = 2gx−w+ + Γxw+ (ψx ⊗ Ik) + Γx−x+ (In ⊗ ψw)

[x1t−1 ⊗ wt] : Γx−w = 2gx−w + 2Γx2ψxw + Γxw (ψx ⊗ Ik) + Γx−x (In ⊗ ψw)

[x1t−1] : Γx−q = 2gx−q + 2Γx2ψxq + Γxqψx + Γx−x+ (In ⊗ ψq) + Γx−x (In ⊗ ψq)

Coefficients on terms:

[wt+1 ⊗ wt+1] : Γw+w+ = gw+w+ + Γx2+ψww + Γx+w+ (ψw ⊗ Ik)

[wt ⊗ wt+1] : Γww+ = 2gww+ + Γxw+ (ψw ⊗ Ik)

[wt+1] : Γw+q = 2gw+q + 2Γx2+ψwq + Γx+w+ (ψq ⊗ Ik) + Γx+qψw + Γxw+ (ψq ⊗ Ik)

[wt ⊗ wt] : Γww = gww + Γx2ψww + Γxw (ψw ⊗ Ik)

[wt] : Γwq = 2gwq + Γx+w (ψq ⊗ Ik) + 2Γx2ψwq + Γxw (ψq ⊗ Ik) + Γxqψw

[const] : Γqq = gqq + Γx2+ψqq + Γx+qψq + Γx2ψqq + Γxqψq

[wt+1 ⊗ wt] : Γw+w = Γx+w (ψw ⊗ Ik)
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Collecting terms on individual coefficients will lead to linear equations for ψij of the following

type:

Aψij +BψijC +D = 0

where the dimensionality is as follows:

[ψxx]n×n2 : An×n Bn×n Cn2×n2 Dn×n2

[ψxw]n×nk : An×n Bn×n Cnk×nk Dn×nk

[ψxq]n×n : An×n Bn×n Cn×n Dn×n

[ψww]n×k2 : An×n Bn×n Ck2×k2 Dn×k2

[ψwq]n×k : An×n Bn×n Ck×k Dn×k

The solution to this equation is

vec (ψij) = −
[
I ⊗A+ C ′ ⊗B

]−1
vec (D)

where I is an identity matrix of the same size as C.

The coefficient on [x1t−1 ⊗ x1t−1] determines ψxx. After substituting the Γ· terms, we obtain

the equation

0 = (gx + gx+ψx)ψxx + gx+ψxx (ψx ⊗ ψx) + gx−x− + 2gx−x (In ⊗ ψx) + (47)

+ [gxx + 2gxx+ (In ⊗ ψx) + gx+x+ (ψx ⊗ ψx)] (ψx ⊗ ψx) + 2gx−x+

(
In ⊗ (ψx)

2
)

The coefficient on [x1t−1 ⊗ wt] determines ψxw:

0 = 2Γx2ψxw + 2gx−w + Γxw (ψx ⊗ Ik) + Γx−x (In ⊗ ψw) (48)

where we do not need to expand the Γ· terms further, as they do not depend on ψxw.

The coefficient on [wt ⊗ wt] determines the term ψww:

0 = Γx2ψww + gww + Γxw (ψw ⊗ Ik) (49)

What remains to be determined are coefficients ψxq, ψwq and ψww. These are more complicated,

as they are determined from equations for the coefficients on x1t−1, wt and the constant term, which

also depend on the second term in (46). We discuss this second term 2Et [M1t+1g1t+1] later, however

we note already now that the second term also depends on the second-order derivatives of the

continuation values. For now, we only compute the contribution of the first term, Et [M0t+1g2t+1],

and reflect the fact that the contribution of the second term is missing by the symbol ≈ in the

equations below.

Coefficients on [x1t−1] and [x1t−1 ⊗ wt+1] determine the contribution of the first term in (46)
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to determining ψxq. The i-th equation in terms containing x1t−1 and x1t−1 ⊗wt+1 reads

Γi
x−qx1t−1 + Ẽi

t

[
Γi
x−w+ (x1t−1 ⊗ wt+1)

]

Reorganizing the second term and stacking equation rows, we get

0 ≈ Γx−q +
[
Ei

t

[
w′
t+1

]
matk,n

(
Γi
x−w+

)]n
i=1

Only Γx−q depends on ψxq, we can therefore write it out to obtain

0 ≈ 2Γx2ψxq + 2Γx2+ψxqψx + 2gx−q + [2gxq + Γx+qψx + Γxx+ (In ⊗ ψq) + Γxx (ψq ⊗ In)]ψx +

+Γx−x+ (In ⊗ ψq) + Γx−x (In ⊗ ψq) +
[
Ei

t

[
w′
t+1

]
matk,n

(
Γi
x−w+

)]n
i=1

(50)

The coefficients on [wt], [wt ⊗ wt+1] and [wt+1 ⊗ wt] determine the contribution of the first term

in (46) to the determination of ψwq. The i-th equation for these terms reads

Γi
wqwt + Ẽi

t

[
Γi
w+w (wt+1 ⊗wt)

]
+ Ẽi

t [Γww+ (wt ⊗ wt+1)]

After reorganizing and stacking, we obtain

0 ≈ Γwq +
[
Ẽi

t

[
w′
t+1

] (
matk,k

(
Γi
w+w

))′]n
i=1

+
[
Ẽi

t

[
w′
t+1

] (
matk,k

(
Γi
ww+

))]n
i=1

Again, only the first term depends on ψwq, so that

0 ≈ 2Γx2ψwq + 2gwq + Γx+w (ψq ⊗ Ik) + Γxw (ψq ⊗ Ik) + Γxqψw + (51)

+
[
Ẽi

t

[
w′
t+1

] (
matk,k

(
Γi
w+w

))′]n
i=1

+
[
Ẽi

t

[
w′
t+1

] (
matk,k

(
Γi
ww+

))]n
i=1

Finally, the coefficients on [wt+1], [wt+1 ⊗ wt+1] and the constant term will determine the

contribution to ψqq:

0 ≈ Γi
qq + Γi

w+qẼ
i
t [wt+1] + Γi

w+w+Ẽ
i
t [wt+1 ⊗wt+1]

which after stacking yields

0 ≈ Γqq + diag
[
Γw+qẼt [wt+1]

]
+ diag

[
Γw+w+Ẽt [wt+1 ⊗ wt+1]

]

Again, ψqq only shows up in the first term, so that

0 ≈ (Γx2+ + Γx2)ψqq + gqq + (Γx+q + Γxq)ψq + (52)

+diag
[
Γw+qẼt [wt+1] + Γw+w+Ẽt [wt+1 ⊗ wt+1]

]
.
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Second term In order to compute 2Et [M1t+1g1t+1], first observe that

g1t+1 = [(gx+ψx + gx)ψx + gx−]x1t−1 + [(gx+ψx + gx)ψw + gw]wt +

+(gx+ψx + gx+ + gx)ψq + gq + (gx+ψw + gw+)wt+1 =

= (gx+ψw + gw+)wt+1 − diag
(
(gx+ψw + gw+) Ẽt [wt+1]

)

where the terms drop out because of the relationships implied by (45).

From the solution for V i
2t+1 in Appendix C.1, we obtain

V i
2t+1 − Ẽi

t

[
V i
2t+1

]
=

[
2V i

xψxw + V i
xx (ψx ⊗ ψw)

] [
x1t ⊗wt+1 − Ẽi

t [x1t ⊗ wt+1]
]
+ (53)

+
[
V i
xx (ψw ⊗ ψx)

] [
wt+1 ⊗ x1t − Ẽi

t [wt+1 ⊗ x1t]
]

+
[
2V i

xψwq + V i
xx (ψw ⊗ ψq + ψq ⊗ ψw) + 2V i

xqψw

] [
wt+1 − Ẽi

twt+1

]
+

+
[
V i
xψww + V i

xx (ψw ⊗ ψw)
] [
wt+1 ⊗ wt+1 − Ẽi

t [wt+1 ⊗ wt+1]
]

This term is the crucial component of the worst-case belief distortion M i
1t+1 in (16). For the i-the

equation in 2Et [M1t+1g1t+1], we therefore have:

2Et [M1t+1g1t+1]
i = − 1

θi
Ẽi

t

[(
V i
2t+1 − Ẽi

t [V2t+1]
)(

wt+1 − Ẽi
t [wt+1]

)′] (
gix+ψw + giw+

)′

Substituting in the expression for V i
2t+1 − Ẽi

t [V2t+1], we need to compute the following terms:

Ẽi
t

[(
x1t ⊗ wt+1 − Ẽi

t [x1t ⊗ wt+1]
)(

wt+1 − Ẽi
t [wt+1]

)′]
= x1t ⊗ Ik

Ẽi
t

[(
wt+1 ⊗ x1t − Ẽi

t [wt+1 ⊗ x1t]
)(

wt+1 − Ẽi
t [wt+1]

)′]
= Ik ⊗ x1t

Ẽi
t

[(
wt+1 − Ẽi

twt+1

)(
wt+1 − Ẽi

t [wt+1]
)′]

= Ik

Ẽi
t

[(
wt+1 ⊗ wt+1 − Ẽi

t [wt+1 ⊗ wt+1]
)(

wt+1 − Ẽi
t [wt+1]

)′]
= Ik ⊗ Ẽi

t [wt+1] + Ẽi
t [wt+1]⊗ Ik

Thus

2Et [M1t+1g1t+1]
i = − 1

θi

[
2V i

xψxw + V i
xx (ψx ⊗ ψw)

] (
x1t ⊗

(
gix+ψw + giw+

)′)

− 1

θi

[
V i
xx (ψw ⊗ ψx)

] ((
gix+ψw + giw+

)′ ⊗ x1t

)

− 1

θi

[
2V i

xψwq + V i
xx (ψw ⊗ ψq + ψq ⊗ ψw) + 2V i

xqψw

] (
gix+ψw + giw+

)′

− 1

θi

[
V i
xψww + V i

xx (ψw ⊗ ψw)
] ((

gix+ψw + giw+

)′ ⊗ Ẽi
t [wt+1]

)

− 1

θi

[
V i
xψww + V i

xx (ψw ⊗ ψw)
] (
Ẽi

t [wt+1]⊗
(
gix+ψw + giw+

)′)
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The bottom three lines contribute to the constant term in the set of equilibrium conditions,

which in turn determines ψqq. The first two lines contribute through x1t = ψxx1t−1 + ψwwt + ψq

to the coefficients on x1t−1, wt and the constant. Rewrite the first two lines as

− 1

θi

(
gix+ψw + giw+

)
matk,n

[
2V i

xψxw + V i
xx (ψx ⊗ ψw)

]
x1t

− 1

θi

(
gix+ψw + giw+

) (
matn,k

[
V i
xx (ψw ⊗ ψx)

])′
x1t

which we can use to define Gi
xx1t with

Gi
x = − 1

θi

(
gix+ψw + giw+

) [
matk,n

[
2V i

xψxw + V i
xx (ψx ⊗ ψw)

]
+
(
matn,k

[
V i
xx (ψw ⊗ ψx)

])′]

Then the contribution of 2Et [M1t+1g1t+1] to the individual terms in the set of equilibrium conditions

is

[x1t−1] :
[
Gi

x

]n
i=1

ψx (54)

[wt] :
[
Gi

x

]n
i=1

ψw (55)

[const] :
[
Gi

x

]n
i=1

ψq − (56)

−
[
1

θi

(
gix+ψw + giw+

) [
2V i

xψwq + V i
xx (ψw ⊗ ψq + ψq ⊗ ψw) + 2V i

xqψw

]′
]n

i=1

−
[
1

θi

(
gix+ψw + giw+

) (
matk,k

[
V i
xψww + V i

xx (ψw ⊗ ψw)
])′
Ẽi

t [wt+1]

]n

i=1

−
[
1

θi

(
gix+ψw + giw+

) (
matk,k

[
V i
xψww + V i

xx (ψw ⊗ ψw)
])
Ẽi

t [wt+1]

]n

i=1

where the [ · ]ni=1 operator indicates horizontal stacking of rows.

Computational strategy for the second derivative We now put the contribution of the

two terms in (46) together and device a strategy on how to co-determine ψij and V i
ij.

1. First compute ψxx, ψxw and ψww. These are solely determined by the contribution of the

first term in (46), and do not depend on the second derivatives of V i. In order to do so, solve

equation (47), (48), and (49).

2. The term ψxx is sufficient to determine V i
xx using equation (42).

3. With V i
xx, we can compute

[
Gi

x

]n
i=1

in (54), and thus also:

• ψxq by adding terms in (50) and
[
Gi

x

]n
i=1

ψx from (54);

• ψwq by adding terms in (51) and
[
Gi

x

]n
i=1

ψw from (55).

4. Compute V i
xq in (42).
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5. Now we can solve for ψqq using terms in (52) and adding the constant vector consisting of

terms in (56).

This procedure completely determines all the belief distortions representing the worst-case

models and the second-order law of motion for the state vector.

C.3 Distorted dynamics

The approximation we use to construct the dynamics under the worst-case model assumes that

we replace M i
t+1 with an approximation that replaces V i

t+1 in the formula with its second-order

approximation and do not expand M i
t+1 further:

M i
t+1 ≈ M̂ i

t+1 ≡
exp

(
− 1

θi

(
V i
1t+1 +

1
2V

i
2t+1

))

Et

[
exp

(
− 1

θi

(
V i
1t+1 +

1
2V

i
2t+1

))]

This expression is strictly positive and has a unitary mean, and it can therefore be used as a change

of measure.5 Also, since V i
1t+1 is linear in wt+1 and V i

2t+1 is quadratic, we can write it as

M̂ i
t+1 =

exp

((
Âi

0 + Âi
1x1t

)′
wt+1 + B̂i (wt+1 ⊗ wt+1)

)

Et

[
exp

((
Âi

0 + Âi
1x1t

)′
wt+1 + B̂i (wt+1 ⊗wt+1)

)]

To derive Âi
0, Â

i
1 and B̂i, use the solutions for V i

1t and V
i
2t from Appendix C.1 and equation (53).

Ignoring terms that are in time-t information set, we have

− 1

θi

(
V i
1t+1 +

1

2
V i
2t+1

)
∝ − 1

θi

[
V i
xψw + V i

xψwq +
1

2
V i
xx (ψw ⊗ ψq + ψq ⊗ ψw) + V i

xqψw

]
wt+1

− 1

θi
(x1t)

′
[(

matk,n

[
V i
xψxw +

1

2
V i
xx (ψx ⊗ ψw)

])′

+matn,k

[
1

2
V i
xx (ψw ⊗ ψx)

]]
wt+1

− 1

2θi

[
V i
xψww + V i

xx (ψw ⊗ ψw)
]
[wt+1 ⊗ wt+1]

This immediately implies that

Âi
0 = − 1

θi

[
V i
xψw + V i

xψwq +
1

2
V i
xx (ψw ⊗ ψq + ψq ⊗ ψw) + V i

xqψw

]′

Âi
1 = − 1

θi

[(
matk,n

[
V i
xψxw +

1

2
V i
xx (ψx ⊗ ψw)

])′

+matn,k

[
1

2
V i
xx (ψw ⊗ ψx)

]]′

B̂i = − 1

2θi

[
V i
xψww + V i

xx (ψw ⊗ ψw)
]

5Moreover, this expression corresponds to the first-order logarithmic expansion of M i

t+1, compensated
to make its mean equal to one. We choose this first-order expansion as an appropriate one here, since
the second-order term in the expansion of M i

t+1 does not contribute to the solution of the second-order
approximation of the model.
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Utilizing formula (33), we deduce that under the distorted measure ·̂i, the shock wt+1 is dis-

tributed as wt+1 ∼ N
(
µ̂it, σ̂

i
(
σ̂i
)′)

where

σ̂i
(
σ̂i
)′

=
(
Ik − sym

[
matk,k

(
2B̂i

)])−1
(57)

µ̂i = σ̂i
(
σ̂i
)′ (

Âi
0 + Âi

1x1t

)
= µ̂i0 + µ̂i1x1t (58)

The approximate distortion M̂ i
t+1 therefore induces a time-varying change in the drift of the

shock that is a linear function of the state vector x1t, and a constant adjustment in its volatility.

We can therefore write

wt+1 = µ̂i0 + µ̂i1x1t + σ̂iŵi
t+1

where ŵi
t+1 ∼ N (0, Ik) under ·̂i. Under the distorted dynamics implied by ·̂i, the model behaves as

x0t = ψ (x0t−1, 0)

x1t =
[
ψx + ψwµ̂

i
1

]
x1t−1 + ψwσ̂

iŵi
t + ψwµ̂

i
0 + ψq

x2t = ψxx2t−1 +
[
ψxx + 2ψxw

(
In ⊗ µ̂i1

)
+ ψww

(
µ̂i1 ⊗ µ̂i1

)]
(x1t−1 ⊗ x1t−1) +

+

[
2ψxw

(
In ⊗ σ̂i

)
+ ψww

((
µ̂i1
)
⊗ σ̂i +

[
σ̂i ⊗

(
µ̂i1
)
·j

]k
i=1

)] (
x1t−1 ⊗ ŵi

t

)
+

+
[
2ψxq + 2ψxw

(
In ⊗ µ̂i0

)
+ 2ψwqµ̂

i
1 + ψww

(
µ̂i0 ⊗ µ̂i1 + µ̂i1 ⊗ µ̂i0

)]
x1t−1 +

+ψww

(
σ̂i ⊗ σ̂i

) (
ŵi
t ⊗ ŵi

t

)
+
[
2ψwqσ̂

i + ψww

(
µ̂i0 ⊗ σ̂i + σ̂i ⊗ µ̂i0

)]
ŵi
t +

+ψqq + ψww

(
µ̂i0 ⊗ µ̂i0

)
+ 2ψwqµ̂

i
0

D Static robust problems

The minimization problem (6) of the agent endowed with multiplier preferences leads to the first-

order condition

0 = logC + θ (logM + 1) + κ

where κ is the Lagrange multiplier on the constraint E [M ] = 1. Since E [M ] = 1, the solution for

the worst-case distortion must necessarily be

M =
exp

(
−1

θ logC
)

E
[
exp

(
−1

θ logC
)] = exp

(
− 1

2θ2
(qσ)2 − 1

θ
qσW

)
(59)

Substituting this worst-case distortion into the objective function then yields

umult = −θ logE
[
exp

(
−1

θ
logC

)]
= µ− 1

2
(qσ)2 − 1

2

1

θ
(qσ)2

which is the same objective as that of the power utility agent, upow, when θ = (γ − 1)−1. The two

preference structures are thus isomorphic.
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For the constraint preferences (7), write the Langrangean

Lcon = E [M logC] + θ (E [M logM ]− η) + κ (E [M ]− 1)

where θ is the endogenous Lagrange multiplier to be determined. The first-order condition implies

the same form (59) for the worst-case distortion. In order to determine θ, compute

η = E [M logM ] =
1

2θ2
(qσ)2 =⇒ 1

θ
=

√
2η

qσ

which implies result (9).
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