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Jaroslav Borovička – pinus@centrum.cz, jb2383@bris.ac.uk

University of Bristol / Czech Technical University in Prague

Contents

1 Problem statement 1

1.1 Convolution and correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Smoothing the image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Calculating the direction map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Finding corresponding points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Key issues affecting the performance 4

3 Experimental results 6

3.1 Table scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Office scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Other scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Critical analysis and possible improvements 10

5 Program listing 12



1 Problem statement 1

1 Problem statement

The objective of this application is to determine the depth in a scene from two views obtained
from a calibrated stereo system. This is done by reconstructing the 3-D position of detected edge
points. The task is subdivided into following parts, which are then discussed in more detail in further
sections.

First, edges have to be detected in both images. In order to reduce the noise in the image, I use a
Gaussian smoothing filter. Then, edges are detected by using horizontal and vertical Sobel filters,
and merging the obtained information about horizontal and vertical edges. The Sobel filters are
also used to determine the edge directions. After some testing, I also added a second-derivative
filter which, in connection with the first-derivative Sobel filters, offers a more robust way of edge
recognition.

Secondly, the detected edge features in both images have to be matched. This is done by taking each
edge pixel from the left image, and calculating the corresponding epipolar line in the right image.
The corresponding edge pixel in the right image will lie on (or close to) the epipolar line. I tried to
implement various measures for finding the matching edge point, and results are discussed in Section
3. Finding the matching points proved to be by far the most difficult part of the assignment.

After finding the matching points, 3-D position of the points in the actual scene is reconstructed
using triangulation. Obviously incorrectly detected points (noise) are removed.

I also used an alternative method. I marked important points in one image manually, then ran the
program in order to find corresponding points in the second image using the algorithm described
above, and connected the calculated 3-D points with lines. Results are also shown in Section 3.

1.1 Convolution and correlation

Smoothing the image and using the Sobel filters requires the implementation of the discrete convo-
lution functional. Since only filters of small sizes are used, I programmed the convolution functional
in spatial coordinates, rather than using the Fourier transform (i.e. I do h = f ∗g directly instead of
h = F−1(Ff · Fg). Although the multiplication of the Fourier images is much faster than the con-
volution in the spatial coordinates, the Fourier transform, implemented as Fast Fourier Transform
with its complexity O(n logn), would be inefficient for convolution of the image and a small filter.
The convolution is implemented in the convolution function, and it generally uses the (discrete)
formula

h[k, l] =
∞∑

i=−∞

∞∑
j=−∞

f [i, j] g[k − i, l − j]

but in practice, i and j only run through the support of f [i, j] g[k−i, l−j]. We should also not forget
that convolution distorts the image along the edges (since it assumes a periodic function, which is
not the case here, and we rather pad the image with zeros). Therefore, we should rather neglect the
edges when working with the image after convolution.

As similarity measure, I used the correlation coefficient calculated on a selected neighbourhood of
the two points being compared. Theoretically, I could also use the Fourier images but again, since
the area is quite small, I calculate the correlation in spatial coordinates. I use the formula

ρ(a, b) =
Cov(Ωa,Ωb)√
V arΩaV arΩb

) =

∑
i,j (va − va)(vb − vb)√∑

i,j (va − va)2
∑

i,j (vb − vb)2

where Ωa, Ωb are the neigbourhoods of the points a, b, and the sums are over these neighbourhoods.
v is the compared quantity (i.e. magnitude or angle of the edge, or intensity). Adjustment has to
be made for the angle, since ε and 2π − ε are actually very similar angles. This is considered in the
implementation.
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1.2 Smoothing the image

Smoothing the image is accomplished using a 2-dimensional Gaussian smoothing filter. The size
of the filter (standard deviation of the conjugate normal distribution) can be specified using the
-s command-line parameter. Since approximating the values of the distribution function of normal
distribution is rather complicated, I use the probability density function instead. So, since the centre
of the filter is shifted to (0, 0), we have

smoothfilter [i, j] =
1

(
√
2πσ)2

· e− i2+j2

2σ2

instead of (mathematically correct)

smoothfilter [i, j] =
∫ i+0.5

i−0.5

∫ j+0.5

j−0.5

1

(
√
2πσ)2

· e− x2+y2

2σ2 dy dx

However, the error is less than 5% for a vast majority of cases, a number more than sufficient for
our application. The filter values are then normalised so that they add up to one. The smoothing
is then done by convoluting the above defined filter with the image (see function smoothimage for
more detail on the application).

1.3 Edge detection

The edge detection is based on the implementation of Sobel filters. The horizontal and vertical Sobel
filters are applied on the smoothed image. The filter masks are shown in Figure 1. These filters are

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

Figure 1: Vertical (left) and horizontal (right) Sobel filter masks

convoluted with the image, and then merged using the L2 (Euclidean) norm

|∇f | = sobelmerged[i, j] =
√
(sobelvert[i, j])2 + (sobelhoriz[i, j])2 =

√(
∂f

∂x

)2
+

(
∂f

∂y

)2
.

sobelmerged then contains the edge map where each pixel contains the intensity of the edge. This edge
map is then normalised and thresholded using the -t1 parameter (values 0..255 – 0 corresponds to
no thresholding, 255 to removing all edges). The suitable value of the threshold very much depends
on the type of the image, as discussed in Section 3.

The Sobel filters themselves are however quite often mislead by noise which they falsely recognise
as edges. This can be to a large extent solved by smoothing the image but then the edges tend to
be thicker. A good solution is to support the Sobel filter by a 2nd-derivative filter. Whereas Sobel
filters are based on looking-up the maxima of the first derivative (middle graph of Figure 2, the
2nd-derivative filter is looks-up zero crossings of the 2nd-derivative (right image of Figure 2). The
2nd-derivative filter is implemented in the following way. To reduce the occurrence of high frequencies
(noise), we smooth the image, and then apply the Laplace operator on the smooth image, i.e.

∇2(G ∗ f) =
∂2(G ∗ f)

∂x2
+

∂2(G ∗ f)
∂y2

where f is our image, and G is the Gaussian smoothing filter. From the linearity of convolution, it
follows that

∇2(G ∗ f) = (∇2G) ∗ f.

(∇2G) (Laplacian of Gaussian – LoG) can be precomputed, and has the “Mexican hat” form (two
“Mexican hat” filters of different sizes are defined in the beginning of the source code, page 12).
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Figure 2: Behaviour of the intensity function (left), its derivative (middle), and second derivative
(right) around an edge. The first derivative reaches its maximum, the second derivative crosses zero
at the edge.

After applying the “Mexican hat” filter, the zero-crossings have to be found. This is done by running
a 2x2 window over the image — if both positive and negative values appear in the window, a zero
crossing occurs. A point is then considered as an edge point when the Sobel filter signalises an
edge and the “Mexican hat” filter signalises a zero-crossing. See method EdgesUsing2ndDer in the
TPGMImage class for implementation.

After edge maps are calculated, they are thresholded in order to keep only significant edges. Suitable
values for the thresholding parameters are discussed in Section 3.

1.4 Calculating the direction map

In order to calculate the direction map (see function thresholdandfinddirectionmap), we make
use of the already calculated convolutions of the image with the horizontal and vertical Sobel filter.
For every detected edge point [i, j] we calculate the angle θ as

θ[i, j] = tan−1
(

∂f

∂y
[i, j]

/
∂f

∂x
[i, j]

)
= tan−1

sobelvert[i, j]
sobelhoriz[i, j]

Using the function atan2 in C gives angles in the interval (−π, π). However, since edges with angles
θ and θ + π have got the same direction, we can shift all θ[i, j]’s so that they lie in (−π/2, π/2).

1.5 Finding corresponding points

In order to achieve this task, we need to establish the dependence between corresponding points. It
follows from epipolar geometry that, for a point in the left image plane, the corresponding point in
the right image plane will lie on the epipolar line. The epipolar line corresponds to the straight line
which passes through the left camera and the point in the left image plane, projected onto the right
image plane. Since (keeping the notation in lecture notes) Pl, T , and Pl − T all lie in one plane, we
have (Pl − T )T(T × Pl) = 0. Now, each vector product can be expressed as a product of a matrix
with one of the vectors (T × Pl = SPl). We obtain

(Pl − T )T(SPl) = 0 and since we have Pl − T = RTPr

PTr RSPl = 0 and we define E � RS as the essential matrix

PTr EPl = 0 we divide by ZrZl/frfl

pTr Epl = 0

In pixel coordinates we have pl,r =Ml,rpl,r, where Ml,r =

⎛
⎝ −1/sx 0 ox

0 −1/sy oy

0 0 1

⎞
⎠.

pTr (M
−1
r )

TEM−1
l pl = 0 and we define F � (M−1

r )
TEM−1

l as the fundamental matrix

pTr Fpl = 0 and since pr = (xr, yr, f)
T and ur = Fpl

xrurx + yrury + furz = 0
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This is the equation of the epipolar line. Now we examine all edge pixels that lie on (or very close
to) the epipolar line, and calculate the similarity measure between the pixel in the left image and
these pixels. We consider the pixel with the highest similarity as the matching pixel (provided that
the value of the similarity measure, i.e. correlation is sufficiently high).

We can significantly reduce the number of incorrectly matched points (noise) by running reversed
matching. Once a match for a point from the left image is found in the right image, we run the
matching procedure on the point from the right image. If the matching point in the left image
is identical (or very close, say 1 pixel difference) to the original point, the match is confirmed.
Otherwise, we remove the point from the list of matches. Of course the formulas for the right→left
matching will slightly differ from the above stated formulas but their derivation is straightforward.

1.6 Triangulation

Each matching pair of pixels defines a pair of rays which should, ideally, meet in the 3-D position of
the point in the scene. However, because of inaccuracies, this will not happen. We therefore find the
shortest transversal line between the two rays, and set the position of the 3-D point into the middle
of this transversal line. The direction vectors of the two rays, as seen from the point of view of the
left camera, are pl and RTpr. The rays can be therefore parametrised as apl and bRTpr + T (T is
the shift between the cameras). Shortest transversal line between the two rays is perpendicular to
both rays, and therefore can be parametrised as c(pl ×RTpr). Finding the shortest transversal line
then means solving the set of 3 linear equations

apl − bRTpr − T + c(pl × RTpr) = 0

for the unknown parameters a, b, and c. The middle of the transversal line, from the point of view
of the left camera, is then apl + c

2 (pl × RTpr). This is our estimate P̂l of the 3-D point Pl. Ideally,
c = 0, and then a = Zl/f .

2 Key issues affecting the performance

The most severe problem is finding the correct matches for the features in the left and right image.
Following issues, ordered in the succession how they occur when processing the images, influence
the performance of the program. I also state measures that were implemented in the program in
order to eliminate or reduce these problems.

- Quality of the images: This is an issue where the program can offer only secondary solutions.
Once low-quality images are submitted on input, they can be adjusted in order to suit better
the implemented algorithms but lost information cannot be won back. Since we based our
algorithms on edge detection, the main problems are noise in the images, and low contrast. I
handle the noise in the images (which is present mainly due to the low color quantisation) by
smoothing the images before they are submitted to the edge detector. Low contrast could be
handled by contrast stretching or histogram equalisation.

- Suitable edge detector: Finding a reasonable edge map is very important for two reasons.
Firstly, the edge map gives us the features (edge points) which we are trying to match. Sec-
ondly, the edge map provides data for calculating the similarity measure when looking up the
matching points. The implemented Sobel filters, since they work only on a 3× 3 area, are not
very resistent to noise. I therefore implemented a 2nd order filter which supports the Sobel
filters. A pixel is only considered as an edge if both the Sobel filter and the 2nd order filter
confirm the pixel as an edge.

- Position of the cameras: If the cameras are too close to each other, we get bad stereo infor-
mation (the images are nearly identical and we the extraction of the depth is very sensitive
to even very small errors). On the other hand, if the cameras are too far apart, problems
with too big differences between the too images occur. These include distortions in shape and
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scale, different illumination levels, or occlusions (objects hidden by other objects, or objects
visible from a different side). A partial solution to the problem with too distant cameras might
be using feature based methods rather than correlation, since correlation methods are more
sensitive to big differences in shape and shade.

- Selection of features that are being matched: I restricted my algorithm on working with indi-
vidual edge pixels. Such a method produces a dense disparity map which is illustrative for a
human observer since the whole surface is reconstructed (assuming that there is enough edge
points that we can match). The main advantage of this method is that we do not have to
make any assumptions about the image (type of occurring objects etc.). Textured images are
of an advantage for this method.

Methods working with more sophisticated objects are discussed in Section 4. I also tried
processed some of the images using a simplified variant of such a method: I marked the
features (in my case corners) in one image by hand, telling the program which corners should
be connected in the end. Then I ran the algorithm to fing the correspondences in the second
image, and reconstructed a 3-D scene by connecting the corners with lines. Results are shown
in Section 3.

- Issues concerning correlation: Correlation based methods can be slow, especially on larger
images, and with larger matching windows. Fortunately, we can restrict our search to the
epipolar line, as described in Section 1.5.

Another question is the size of the matching window. I experimented with the width of
the window, 2W + 1, and consider values around W = 10 as most suitable for a variety of
cases. Smaller window sizes often result in spurious matches, larger windows contain already
too big distortions caused by different positions and angles of the two cameras. Moreover,
larger windows slow down the algorithm (quadratically with W). Naturally, the further apart
the cameras are, the more difficult is the matching using correlation methods because the
distortions increase.

Finally, we have to ask which features should be matched. Using the options we have, we
can use the original image (intensities), magnitudes of the edges, or angles of the edges. My
experiments showed that a combination of these three correlations is suitable. Taking always
the maximum value of these three correlations also gave good results.

- Spurious matches: None of the above described precautions could fully avoid spurious matches.
These spurious matches result in an incorrect choice of the 3-D point on the ray which passes
through the camera and the image point. Since these points still lie on the ray, they are not
observable when looking on the 3-D reconstruction from the position of the camera. However,
once we start rotating the 3-D reconstruction, they appear as incorrectly positioned points
(noise).

In order to solve this problem, I implemented the idea of reversed matching (described in
Section 1.5). Reversed matching siginificantly reduced the amount of noise in the 3-D recon-
tructions (most, but not all, of the spurious matches were removed).

Another measure, which however requires some prior knowledge about the scene, is to restrict
the range for the Z coordinate. If we approximately know where the scene is positioned, we
can remove all points with Z coordinate outside this range. A natural restriction is of course
Z > 0, or, for some applications, Z > f .

- Occlusions: These particularly happen when cameras are far apart, or the objects are very
close to the cameras. There is no way how to reconstruct the 3-D position of points that are
occluded in one of the images. Even worse, these points often result in spurious matches. One
way how to handle this problem is to set a threshold on the calculated correlation — if the
correlation between the point and its best match is less than a certain value, we neglect such
a match. Of course there is a tradeoff: the higher the threshold, the higher the chance that
we also neglect some correct matches.

- Rounding errors: Since we match integer pixel positions to integer pixel positions, even the best
match does not have to be the most accurate. This sometimes results in zigzag reconstructions
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of straight lines. Strictly speaking, due to aliasing, the lines are already zigzag in the 2-D
images, so the reconstruction is actually “correct”. But a more desired result would rather be
a straight 3-D representation of such a line. Similarly, we would like to suppress the variation
in the representation of surfaces, which is also to a big extent caused by the discrete matching
(this can particularly happen for distant objects where even a small inaccuracy in the match
causes a big inaccuracy in the Z coordinate).

Again, due to discrete sampling (pixelisation) of the continuous reality, we loose information,
so that this problem cannot be solved sufficiently. One approach is to calculate the correlation
in subpixel accuracy, and estimate the matches as non-integer numbers. I did not implement
this feature, and I discuss it in more detail in Section 4. Instead, I try to average out the Z
coordinates for the pixels that lie next to each other. This indeed leads to improvements in the
variation, and is much faster than the implementation of the subpixel accuracy. On the other
hand, problems appear when pixels lie next to each other in the 2-D image but actually belong
to different objects which are behind each other. These pixels should not be averaged out.
But if such a situation occurs then the matching pixels for these two pixels will not lie close to
each other in the second 2-D image. I therefore only average out pixels (their Z coordinates)
that lie next to each other in one image, and very close to each other (max. 1 pixel between
them) in the second image.

3 Experimental results

In this section, I will discuss the two approaches I took: first, automatic recognition of features
(edge pixels) being matched, and second, marking features (corners) by hand, and their automatic
matching. I will also point out some peculiarities of the given test images and problems that occurred.

3.1 Table scene

This scene contains a lot of objects, and is in my view the most complicated of all. There are some
occlusions (e.g. the bottle on the left occludes the border of the paper pads, shadow of the bottle
is occluded to a big extent in one image), shifts which distort the position of the foreground and
background (making the usage of intensity correlation more difficult), and scaling (especially the
stapler). I consider a dense disparity map (at least regarding the edges) more suitable for this type
of images, since it is more illustrative.

Figures 3 4 show the whole process of 3-D reconstruction beginning with the edge map, over the
epipolar lines for some important pixels, and finally the 3-D scene viewed from various angles. No
manual adjustments were made in the reconstructed data. Note the layers created by the objects in
the view from above. These layers correspond to the human perception of the depth in the scene.

Figure 5 shows the significant noise reduction when using reversed matching.

Figure 6 compares various combinations of edge detectors and threshold levels. Higher threshold
levels, or the usage of the 2nd derivative filter result in thinner lines, which might appear more
accurate but some less striking edges might get lost. Lower threshold levels, on the contrary, create
denser disparity maps, showing better the shapes of the objects. Denser disparity maps might appear
rough and overcrowded, but this is a false impression — once the view is zoomed, the details come
up. It depends on the purpose of the reconstruction which of the two approaches should be used.
For general purposes the middle value of the thresholding parameter as most suitable.

3.2 Office scene

I choose the office scene as the second example which I examine in more detail, because this is a
scene very different from the previous one. It is computer generated, and contains only straight
lines. I also used two approaches — first, I marked the corners by hand in one image, and then let
the program recognise the matches and connect the corners (I gave the program information about
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Figure 3: Scene Table: (parameters: edge threshold 20 (of max 255), 2nd derivative edge detector,
smoothing matrix 3 × 3, correlation window 21 × 21, correlation coefficient threshold 0.5, reversed
matching on) First row left: detected edgemap First row right: matched edge pixels Second row left:
epipolar lines in the right image for the top of the bottle, top left corner of the white piece of the
left bottle, top point of the stapler, bottom point of the perforator Second row right: epipolar lines
for the reversed matching Third row left: reconstructed scene from the camera viewpoint Third row
right: scene from the viewpoint elevated by 40o. Continued in Figure 4
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Figure 4: Scene Table: Continued from Figure 3. Left: scene rotated by 20o anticlockwise Right:
scene rotated by 20o clockwise

Figure 5: Scene Table: Influence of reversed matching. Left: scene from the camera viewpoint.
Right: scene from the viewpoint elevated by 40o. Top row: reconstruction without using reversed
matching. Bottom row: reconstruction using reversed matching. Observe the significant reduction
in noise in the view from above when using reversed matching.
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Figure 6: Scene Table: Various edge thresholding levels. First row left: Threshold 40 (of 255)
+ 2nd derivative edge detector. First row right: Threshold 40. Second row left: Threshold 20 +
2nd derivative edge detector. Second row right: Threshold 20. Third row left: Threshold 10 + 2nd

derivative edge detector. Third row right: Threshold 10.

which corners should be connected). Secondly, I used the approach which I used for the previous
scene — using all edge pixels for matching.

The first approach creates straight lines, but is quite dependent on a suitable choice of the pixels
which should be matched. If we are unfortunate and choose a point which is not matched correctly,
we loose one corner of the object together with connecting edges. This cannot happen in the second
approach when loosing one point is not a severe loss since there are thousands.

This scene also suffers of the fact that many edges are nearly parallel with the direction of the
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epipolar lines. This makes the correlation method very susceptible to errors, since a very similar
window occur many times. This is apparent from the image containing epipolar lines in Figure 7.

Also, many edges are not very distinct (chair, right side of the table, upper right corner of the
window) — therefore it is adviceable to use a low threshold. I use smoothing and then thresholding
at intensity 5 (of max. 255). Furthermore, since the rotation angle between the two cameras is quite
significant, I use a smaller correlation window (11× 11).
In Figure 7, I offer different views on the scene reconstructed using the approach with manually
marked corners. The views are chosen in the way that it is apparent that points that should lie in
one plane indeed are coplanar (especially the window, legs of the table, upper surface of the table).

There are also two points that have not been matched — one of the corners of the chair, and one
of the legs of the chair. In the first case, the corner is difficult to detect in the second image since
the edge is very blurred. In the second case, the leg of the chair is occluded, and therefore cannot
be reconstructed.

Figure 8 shows the reconstruction using all edge points in the thresholded edge map. It is apparent
that the nearly colinear epipolar lines and the upper edge of the room cause the algorithm to fail to
recognise a consistent edge. The zigzag shape is due to the integer jumps in pixel matching.

3.3 Other scenes

The remaining scenes are less dificult than the Table scene, and the approach remains the same as
in the previous cases. I therefore show here only the reconstructed scenes, viewed always from the
left camera view, and then from a view where the reconstructed 3-D information becomes apparent.
See Figure 9.

Also here, some problems occur. First problem is a repeating pattern alongside the epipolar lines
(the epipolar line crosses several similarly looking edges and it is difficult to pick the right one).
This is the case in the Testpatt scene, or in the Room scene. Especially in the Room scene, where
epipolar lines crosses similar edges, and the scene is otherwise not very textures, the algorithm gets
into significant trouble, and I the results show that the Room scene is the worst reconstructed scene
of all.

Secondly, the rounding errors appear again, and this is most apparent in the Testpatt scene.

4 Critical analysis and possible improvements

In my opinion, the algorithm, taken into account all its limitations described above, works quite
well, and the reconstructed scenes are well visible. The algorithm definitely works better on textured
scenes with a variety of objects, shapes, and edges. The problems that occurred are already described
in Section 3. To summarise, the three most important are:

- Lack of textures or the presence of only sparse and similarly oriented lines makes the correlation
approach inefficient. This is especially apparent in the Room scene.

- If the epipolar lines are approximately parallel with some edges, it is difficult to choose which
edge point is the correct match. This is most visible in the Office scene.

- Finally, discrete matching produces some zigzag lines, which is most apparent in the Testpatt
scene.

Of course, one way of improving the performance of the program is to improve the currently im-
plemented algorithms, e.g. improving the correlation measure so that more relevant matches are
chosen, or altering the edge detector. Here I want to suggest and explain some of possible improve-
ments that should increase the accuracy and reliability of the algorithm, and are different from those
implemented in my program.
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Figure 7: Scene Office: (parameters: edge threshold 5 (of max 255), 2nd derivative edge detector,
smoothing matrix 3 × 3, correlation window 21 × 21, correlation coefficient threshold 0.5, reversed
matching on) First row left: detected edgemap First row right: epipolar lines for the left top corner
of the window, front top corner of the wardrobe, top left corner of the chair, and top front corner
of the table Second and third row: various views on the scene: camera view, rotated clockwise 53o,
rotated anticlockwise 30o and lowered 10o, rotated 180o and elevated 80o. Note: the slope in the
second and third view is given by camera view and the impossibility to rotate the scene in the
appropriate direction in Matlab, it is not a flaw of my algorithm.
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Figure 8: Scene Office: Reconstruction using all edge points (parameters: edge threshold 20 (of
max 255), 2nd derivative edge detector, smoothing matrix 3× 3, correlation window 21× 21, corre-
lation coefficient threshold 0.5, reversed matching on) Left: camera viewpoint. Right: rotated 20o

anticlockwise.

- Sub pixel accuracy: When reconstructing straight lines, inaccuracies occurred due to the fact
that the pixels are matched discretely, i.e. integer pixels on integer pixels. It would be an
improvement to implement sub pixel accuracy, so that the pixels could be matched on non-
integer pixel positions in the second image. Non-integer results are of course of no problem for
the triangulation. But a bigger problem is a severe increase in computatitonal demandingness.
Another problem is the model we use for the interpolation — a simple linear interpolation of
the intensities might not be sufficient, and we are of course only guessing the model.

- Handling problems with finding the correct match on the epipolar line: A possible improvement
would be if we could pre-estimate the position of the matching point on the epipolar line. If we
could for instance assume that the modelled surface is continuous, then the left-to-right order
of the matching pixels has to be fulfilled in both images. But this assumes making additional
assumptions about the scene — it can be useful in the case of Room or Testpatt scenes, but
definitely in the case of more complicated scenes like Table. However, for instance the Testpatt
scene is very suitable for such an assumption, since here, the correlation method suffers by the
fact that the epipolar lines cross a very similar pattern several times. Here, the left-to-right
order assumption would be of big help.

- Object detection identification With the approach I am using, a visually easy understandable
disparity map is produced. But if we want to recognise and reconstruct more complex objects,
it would be more suitable to work with more sophisticated features like lines, corners, or
uniform regions. These more sophisticated methods are however rather suitable when we have
some prior information about what type of objects we might expect (like indoor scenes with
long straight lines). They might prove faster than correlation based methods. They produce
sparse disparity maps, which are visually not so easy to understand for a human, but might
be very useful for automatic object reconstruction.

An implementation of such a feature based solution would require significant changes in the
program (choice of significant and sparse matching points, matching features like lines etc.),
and would be definitely more difficult than the correlation based approach.

5 Program listing

I submit the program listing in a separate file.
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Figure 9: Remaining scenes: Left: original camera view. Right: rotated view so that 3-D information
is apparent.


