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Abstract

This Online Appendix provides further background and extends the results from the main

text of the paper. It also includes the proof of existence and uniqueness of the optimal allocation

that characterizes the equilibrium, as well as other lengthier derivations and proofs omitted from

the main text.



OA.1 Introduction

This Online Appendix contains several specific results that illuminate and extend the analysis from

the paper, the complete proof of Proposition 2.3 that shows existence and uniqueness of the optimal

allocation, and lengthier derivations from remaining proofs. Unless noted otherwise, the framework

is the same as in the paper. The appendix is not fully self-contained, occasionally referring to the

main text.

In Section OA.2, I provide an extended discussion of recursive preferences that justifies the link

between the discrete-time and continuous-time version of recursive preferences, and between the

stochastic differential utility and variational utility approaches in continuous time. Section OA.3

discusses details of the information structure in the economy and general modeling of subjective

beliefs in the Brownian information environment. I also explain contractual details that lead to a

complete-market decentralization with a role for speculative trade even in economies with constant

aggregate endowment. The section also provides a change of measure result that helps express

survival outcomes under agents’ subjective beliefs.

Section OA.4 summarizes additional survival results that are not included in the paper: the

case of multiple, mutually correlated shocks, survival regions under distortions that are symmetric

around the rational case, and the exponential rate of convergence of the Pareto share to its station-

ary distribution. I also include a discussion of the role of parametric restrictions that guarantee

existence of an equilibrium, and provide further details on the dynamics of the Pareto share. Finally,

I provide a discussion of the conventional approach to survival analysis under separable preferences.

In order to illustrate the full dynamics of the model, Section OA.5 contains numerical analysis of

consumption and price dynamics in the interior of the state space for specific example economies.

Section OA.6 compares the survival results with those derived in Kogan, Ross, Wang, and Wester-

field (2006) for economies with no intermediate consumption and a terminal consumption payout.

Section OA.7 discusses in more detail possible extensions of the framework introduced in the pa-

per, including model uncertainty and learning, robust utility of Hansen and Sargent (2001a,b), and

compares the results from this paper to those of Guerdjikova and Sciubba (2015), who work with

smooth ambiguity averse preferences of the Klibanoff, Marinacci, and Mukerji (2005, 2009) type.

Section OA.8 provides a discrete-time formulation of the optimal allocation problem.

Finally, Sections OA.9 and OA.10 provide the full proof of Proposition 2.3 and Section OA.11

contains proofs omitted from Sections 3–5 of the main text of the paper.

OA.2 Recursive preferences

The paper utilizes a continuous-time characterization of recursive preferences based on a more gen-

eral variational utility approach studied by Geoffard (1996) in the deterministic case and El Karoui,

Peng, and Quenez (1997) in a stochastic environment. This section provides more detail on the link

between the discrete-time version of recursive preferences specified in Kreps and Porteus (1978) and

Epstein and Zin (1989), the continuous-time, stochastic differential utility of Duffie and Epstein

(1992b), and the variational utility.
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Agents endowed with separable preferences reduce intertemporal compound lotteries (different

payoff streams allocated over time) to atemporal simple lotteries that resolve uncertainty at a

single point in time. In the Arrow–Debreu world with separable preferences, once trading of

state-contingent securities for all future periods is completed at time 0, uncertainty about the

realized path of the economy can be resolved immediately without any consequences for the ex-

ante preference ranking of the outcomes by the agents.

Kreps and Porteus (1978) relaxed the separability assumption by axiomatizing discrete-time

preferences where temporal resolution of uncertainty matters and preferences are not separable

over time. While intratemporal lotteries in the Kreps–Porteus axiomatization still satisfy the

von Neumann–Morgenstern expected utility axioms, intertemporal lotteries cannot in general be

reduced to atemporal ones. Kreps and Porteus motivated preference for early resolution of un-

certainty as a reduced form for an underlying auxiliary decision model, in which resolving the

uncertainty early allows the agent to take utility-improving actions that lie outside of the main

model.

The representation result in Kreps and Porteus (1978) shows how to characterize the preference

relation using a recursion in which the continuation value at a given point in time is calculated

by aggregating the contribution of consumption today and of the expected continuation value

tomorrow using a nonlinear function, called the aggregator.

The work by Epstein and Zin (1989, 1991) extended the results of Kreps and Porteus (1978),

and initiated the widespread use of recursive preferences in the asset pricing literature. Duffie and

Epstein (1992a,b) formulated the continuous-time counterpart of the recursion.

OA.2.1 Epstein–Zin preferences in continuous time

The survival analysis in the paper is conducted in a continuous-time environment, primarily for

tractability reasons. The continuous-time setup leads to a straightforward characterization of the

boundary conditions for survival, and an easy decentralization of the economy using only two assets

and dynamic trading strategies. However, some intuition for the survival results is provided using

the discrete-time version of the recursive preference specification that explicitly reveals the role

of risk aversion and intertemporal elasticity of substitution. The derivation of the continuous-

time, stochastic differential utility specification closely follows Duffie and Epstein (1992b). In

Section OA.8 I formulate the discrete-time version of the optimal allocation problem that utilizes

this version of recursive preferences.

The discrete-time continuation value process Ṽ for an agent endowed with Epstein-Zin prefer-

ences is given by

Ṽt =

[(
1− e−β

)
(Ct)

1−ρ + e−βRt

(
Ṽt+1

)1−ρ
] 1

1−ρ

(OA.1)

Rt

(
Ṽt+1

)
=

(
EQ

t

[(
Ṽt+1

)1−γ
]) 1

1−γ

,

with parameters satisfying γ, ρ, β > 0. These preferences are homothetic and exhibit a constant
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relative risk aversion with respect to intratemporal wealth gambles γ and (under intratemporal

certainty) a constant intertemporal elasticity of substitution ρ−1. Parameter β is the time preference

coefficient. Assumptions provided in the paper restrict parameters to assure sufficient discounting

for the continuation values to be finite. In the case when γ = ρ, the utility reduces to the separable

CRRA utility with the coefficient of relative risk aversion γ. Notice that the risk adjustment

given by the certainty equivalence operator R acts over the next period continuation value, and

the continuation value process is defined in units of current-period consumption. For the sake of

simplicity, I omit the situations when γ = 1 or ρ = 1, but these can be treated as appropriate

limiting cases.

Since the certainty equivalenceRt

(
Ṽt+1

)
= h−1

(
Et

[
h
(
Ṽt+1

)])
is not linear in Ṽ , the continuous-

time limit leads to a compensation using a variance multiplier that introduces an additional term

to the continuous-time recursion. In order to avoid this issue, it is advantageous to consider an

ordinally equivalent transformation of the utility process

Vt =
1

1− γ

(
Ṽt

)1−γ

that implies the recursion

Vt =
1

1− γ

[(
1− e−β

)
(Ct)

1−ρ + e−β
(
(1− γ)EQ

t Vt+1

) 1−ρ

1−γ

] 1−γ

1−ρ

. (OA.2)

This transformation reduces the certainty equivalence Rt (Vt+1) = EQ
t Vt+1 to an expectation.1

Instead of using a discrete time interval of length one, take a time step of length ε and analyze

the limit as ε→ 0. Express EQ
t [Vt+ε] from (OA.2) to obtain

EQ
t [Vt+ε] = (1− γ)−1

[
eβε ((1− γ)Vt)

1−ρ

1−γ −
(
eβε − 1

)
(Ct)

1−ρ
] 1−γ

1−ρ

.

Applying the L’Hospital rule leads to

lim
εց0

EQ
t [Vt+ε]− Vt

ε
= lim

εց0
(1− γ)−1

[
eβε ((1− γ)Vt)

1−ρ

1−γ −
(
eβε − 1

)
(Ct)

1−ρ
] 1−γ

1−ρ
− Vt

ε
=

= lim
εց0

(1− ρ)−1
[
eβε ((1− γ)Vt)

1−ρ

1−γ −
(
eβε − 1

)
(Ct)

1−ρ
] ρ−γ

1−ρ
·

· βeβε
[
((1− γ)Vt)

1−ρ
1−γ − (Ct)

1−ρ
]

=
β

1− ρ
((1− γ)Vt)

ρ−γ
1−γ

[
((1− γ)Vt)

1−ρ
1−γ − (Ct)

1−ρ
]

= −
β

1− ρ

(Ct)
1−ρ − ((1− γ)Vt)

1−ρ

1−γ

((1− γ)Vt)
γ−ρ

1−γ

.
= −f (Ct, Vt)

The function f (C, V ) is called the aggregator function. Integrating this expression over time and

1Notice that 1− γ and V always have the same sign, so that ((1− γ)EtVt+1)
1−ρ
1−γ is well-defined.

3



taking expectations yields

EQ
t

[∫ ∞

t

−f (Cs, Vs) ds

]
= lim

T→∞
EQ

t [VT ]− Vt,

which, assuming the transversality condition limT→∞ EQ
t [VT ] = 0, implies the formula for the

stochastic differential utility of Duffie and Epstein (1992b):

Vt = EQ
t

[∫ ∞

t

f (Cs, Vs) ds

]
(OA.3)

with the aggregator defined as

f (C, V ) =
β

1− ρ

[
(C)1−ρ ((1− γ)V )

ρ−γ

1−γ − ((1− γ)V )
]
. (OA.4)

The aggregator f (Cs, Vs) links together consumption Cs at time s ∈ [t,∞) with the continuation

value Vs. Agents prefer early resolution of uncertainty when the aggregator is convex in its second

argument. Separability of preferences is achieved as a special case when the aggregator is linear in

the expected continuation value and additive in the contribution of the two components.

An important question is the existence and concavity of the stochastic differential utility V (C).

Duffie and Epstein (1992b) focus on the finite-horizon case and prove concavity only for a concave

aggregator f . Appendix C in their paper discusses the infinite-horizon case but the sufficient

conditions are too strict for this paper. However, the Markov structure of the problem allows

me to utilize the infinite-horizon extensions demonstrated in Duffie and Lions (1992). Schroder

and Skiadas (1999) prove that V (C) is concave even when f is convex in its second argument,

a case that is central to this work, and provide further technical details. Skiadas (1997) shows a

representation theorem for the discrete time version of (OA.3) with subjective beliefs.

OA.2.2 Variational utility specification

Duffie, Geoffard, and Skiadas (1994) were the first to study optimal and equilibrium allocations

with stochastic recursive utility as specified in (OA.3). Dumas, Uppal, and Wang (2000) offer a

different way of defining the recursive utility that is more convenient for the purposes of this paper.

They show that the recursive utility process V can be equivalently represented as a solution to the

maximization problem

λtVt = sup
ν
EQ

t

[∫ ∞

t

λsF (Cs, νs) ds

]
(OA.5)

subject to
dλt
λt

= −νtdt, t ≥ 0; λ0 = 1,

where ν is called the discount rate process, and λn the discount factor process. The felicity function
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F and the aggregator f are linked through the Legendre transformation

f (C, V ) = sup
ν∈R

[F (C, ν)− νV ] (OA.6)

F (C, ν) = inf
V ∈R

[f (C, V ) + νV ] . (OA.7)

The transformation (OA.6)–(OA.7) assumes that f is convex in its second argument. When f is

concave, it suffices to swap the sup and inf operators in the above definitions.

The duality between the aggregator f and the felicity function F offers a transparent economic

interpretation that relates the recursive and variational utility processes. The variational utility

representation is an endogenous discounting problem. Given a discount rate νt, the concave felicity

function F provides instantaneous utility F (Ct, νt) dt, but the decision maker also pays the cost

νtVtdt in the form of increased discounting of the future continuation value. The continuation

value Vt thus represents the price of a unit of discount rate νt. Problem (OA.6) yields the maxi-

mized instantaneous discounted surplus f (Ct, Vt) dt of the decision maker, and the recursive utility

representation aggregates the maximized surplus.

For the case of the Duffie–Epstein–Zin preferences (OA.4), transformation (OA.7) implies

F (C, ν) = β
C1−γ

1− γ

(
1− γ − (1− ρ) ν

β

ρ− γ

) γ−ρ

1−ρ

,

corresponding to the felicity function specification considered in the paper.

OA.3 Information structure and subjective beliefs

OA.3.1 Information structure

Uncertainty in the economy is modeled using a filtered probability space (Ω,F , {Ft} , P ) generated

by a univariate Brownian motionW . Aggregate endowment Y follows a geometric Brownian motion

d log Yt = µydt+ σydWt (OA.8)

with constant parameters µy and σy.

Agents know the parameters µy and σy and observe the realizations of the Brownian motion

W and hence also the realizations of Y . Observing W is equivalent to observing Y when σy > 0

but this distinction will become material when we consider the case without aggregate uncertainty

(σy = 0) in Section OA.3.3.

OA.3.2 Modeling subjective beliefs

Subjective beliefs are modeled as disagreement about the distribution of W (and hence of Y ).

Here, we show that under this Brownian information structure and under mild square integrability

conditions, absolutely continuous subjective beliefs can be generally expressed using local drifts
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distortions of the Brownian motion W .

In line with the literature (Sandroni (2000), Blume and Easley (2006), Kogan, Ross, Wang, and

Westerfield (2006, 2017), Yan (2008) and others), I impose agents’ heterogenous beliefs by specifying

alternative subjective probability measures Qn. Here, I show that constructing a particular Qn is

equivalent to appropriately specifying a stochastic process un that describes the local evolution of

the belief distortion.

In order to prevent arbitrage opportunities and other pathologies, we require subjective proba-

bility measures Qn to be equivalent to each other (and, for convenience, also to the data generating

measure P ) when restricted to finite-horizon events. Hence, there exist martingales Mn adapted

to {Ft} that are strictly positive P -a.s. such that

(
dQn

dP

)

t

.
=Mn

t .

Assume that this martingale is square integrable, i.e., E
[
(Mn

t )
2
]
< ∞. By the Martingale Rep-

resentation Theorem (see, e.g., Øksendal (2007), Theorem 4.3.4), there exists a unique square

integrable process ũn such that

Mn
t =Mn

0 +

∫ t

0
ũns dWs

and hence, defining un
.
= ũn/Mn,

Mn
t = exp

(
−
1

2

∫ t

0
|uns |

2 dt+

∫ t

0
uns dWs

)
.

The Girsanov Theorem then implies that the process

W n
t =Wt −

∫ t

0
uns ds

is a Brownian motion under Qn. Substituting this expression into (OA.8) implies that

d log Yt = (µy + σyu
n
s ) dt+ σydW

n
t .

Hence, under the subjective probability measure Qn (which we have not restricted beyond technical

conditions involving absolute continuity and square integrability), the agent perceives the original

Brownian motion to have a local drift distortion unt , and the logarithm of the aggregate endowment

to have a local trend µ̃y,t
.
= µy + σyu

n
s .

Reverting the argument, subjective beliefs represented by Qn in this Brownian information

environment can be generally modeled by directly specifying the processes un. In the paper, un

is taken to be constant, as a particular special case. These specific belief distortions have been

studied by Yan (2008), Kogan, Ross, Wang, and Westerfield (2017) and others.
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OA.3.3 Contractual structure in the economy without aggregate risk

In the model economy driven by a univariate Brownian motion, dynamic trade in two suitably

chosen assets provide a dynamically complete market in the sense of Harrison and Kreps (1979).

When σy > 0, it is intuitively convenient to specify the two assets as an infinitesimal risk-free asset

(with a locally safe return rtdt) in zero net supply and a claim on the aggregate endowment (with

return d logRt) in unit supply.

Introducing additional redundant assets into this environment does not change allocations or

asset prices. Consider therefore dynamic trade in an additional asset that pays off the amount Wt

and is provided in zero net supply. When σy > 0, the redundancy of this asset implies that a feasible

decentralization involves zero positions of both agents in this asset and all trade is conducted in

the infinitesimal risk-free asset and the claim on the aggregate endowment.

Now consider the case without aggregate uncertainty, σy = 0. In this case, trade only in the

infinitesimal risk-free asset and the (now safe) claim on aggregate endowment would not dynamically

span the market, as neither of the asset payoffs is exposed to the shock W . However, a proper

complete-market decentralization involves trade in the claim on W that is in zero net supply

and the claim on the (deterministic) aggregate endowment in unit supply. This is one feasible

decentralization that supports the results in Section 4.4.3 of the paper. Speculative trade in the

claims on realizations of W is voluntary due to heterogeneity in beliefs between the two agents and,

despite the lack of aggregate uncertainty, generates fluctuations in the wealth distribution.

OA.3.4 Change of measure and survival under subjective beliefs

The developed survival criteria are stated from the perspective of a rational observer. However,

agents whose beliefs differ from the true probability measure evaluate their survival chances differ-

ently. Although both agents understand that the optimal (and equilibrium) allocations are given

as a solution to the planner’s problem outlined in the paper, they differ in their view about the

future consumption dynamics. It is straightforward to restate the analysis from the perspective of

the agent with incorrect beliefs. These results are known from earlier literature.

Lemma OA.1 Agent n views the dynamics of the economy as if the belief distortions were given

by (un)n = 0 and (u∼n)n = u∼n−un, where ∼ n indexes the other agent in the economy and
(
uk
)
n

are the beliefs of agent k from the standpoint of agent n.

Proof. The evolution of Brownian motion W under the beliefs of agent n is dWt = undt +

dW n
t . Since the evolution of θ completely describes the dynamics of the economy, substituting this

expression into the law of motion for θ and reorganizing yields the desired result.

The Lemma implies in particular that the inequalities for survival and dominance developed

in the paper apply for the survival and dominance considerations under a subjective probability

measure Qn, as long as uk are replaced with
(
uk
)
n
for k = 1, 2.

The argument about the change of measure also applies to the planner’s problem, and has

implications for the local predictability of the modified discount factor processes λ̄n. The social
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planner can choose to maximize welfare as the weighted average of utilities evaluated as distorted

relative to any subjective measure, as long as the absolute continuity assumption is satisfied and

the distorting martingales Mn are properly constructed relative to the chosen measure. Then the

modified discount factor process λ̄n of the agent whose belief distortion coincides with the distortion

of the social planner will be locally predictable.

OA.4 Specific survival results

OA.4.1 Role of restrictions on the time preference parameter

Assumption A.1 in the appendix of the main text imposes parametric restrictions (17)–(18) that

are sufficient for the equilibrium in the economy to exist and the individual decision problems to

be well-defined both for the large agent and for the infinitesimal agent. These conditions effectively

impose sufficient discounting on agents’ preferences. Since the survival conditions in Proposi-

tions 3.2 and 3.4 do not depend on β, these conditions are immaterial for the long-run results,

beyond the natural requirement that an equilibrium exists.

To get a sense how tight these conditions are quantitatively, observe first that when IES ρ−1 = 1,

they amount to β > 0, i.e., any positive degree of impatience is sufficient. The reason is that under

unitary elasticity of substitution, the wealth-consumption ratios satisfy ξn (θ) = β−1 as under

logarithmic preferences. Figure OA.1 then provides contour plots for the minimum values of β for

selected economies from Figure 2 from the paper. The top row shows conditions for economies

with an optimistic agent 1 (corresponding to top left panel in Figure 2), while the bottom row

shows conditions for economies with a pessimistic agent 1 (corresponding to bottom right panel in

Figure 2). Agent 2 is rational in both cases. Both the ‘large agent’ condition (17) in the left panels

and the ‘small agent’ condition (18) in the right panels have to be satisfied.

As the graphs show, the (17)–(18) do not impose a severe restriction on the time preference

parameter. The tightest restriction is the ‘small agent’ restriction (18) for high values of IES.

This is not surprising—the negligible agent forms a speculative portfolio with a high subjective

expected return, which, under a high IES, induces her to choose a high saving rate. Sufficient

impatience is needed to make the consumption-wealth ratio of the negligible agent positive, or,

in other words, to provide sufficient valuation of current marginal consumption relative to future

marginal consumption (compare the condition with formula (15)).

OA.4.2 Relative patience and the dynamics of the Pareto share

The survival conditions in Proposition 3.4 are stated in terms of the logarithmic growth rates of

wealth. However, these conditions can also be restated in terms of the behavior of relative patience

at the boundaries.

For instance, for the left boundary, the limiting discount rate of the large agent ν2 (θ) converges

to ν̄2 from (OA.33) as θ ց 0. Similarly, the limiting discount rate ν1 (θ) for the infinitesimal agent

1 can be inferred from her portfolio problem outlined in the proof of Proposition 5.3 in equations

(26)–(27), which leads to the following result for the limiting behavior of relative patience.
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Figure OA.1: Contour plots for minimum sufficient values of β in Assumption A.1 for alternative preference

parameters. The left panels (‘large agent’ conditions) plot the right-hand side of condition (17), while the

right-panels (‘small agent’ conditions) plot the right-hand side of condition (18). The top row are economies

with an optimistic agent 1, u1 = 0.1, the bottom row economies with a pessimistic agent 1, u1 = −0.25. The

remaining parameters are u2 = 0, µy = 0.02, σy = 0.02.

Proposition OA.1 The expressions for the limiting behavior of the relative patience in are given

by

lim
θց0

ν2 (θ)− ν1 (θ) =
γ − ρ

ρ

[
(
u1 − u2

)
σy +

1

2

(
u1 − u2

)2

γ

]

lim
θր1

ν2 (θ)− ν1 (θ) =
γ − ρ

ρ

[
(
u1 − u2

)
σy −

1

2

(
u1 − u2

)2

γ

]
.
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survival threshold
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Figure OA.2: Relative patience ν2 (θ) − ν1 (θ) (left panel) and the drift component of the Pareto share

evolution Et [dθt] /dt (right panel) as functions of the Pareto share θ. All models are parameterized by

u1 = 0.25, u2 = 0, IES = 1.5, β = 0.05, µy = 0.02, σy = 0.02, and differ in levels of risk aversion. The dotted

horizontal line in the left panel represents the survival threshold 1
2

(
u1
)2

− 1
2

(
u2
)2
.

Proof. See Section OA.11.

Relative patience ν2 (θ) − ν1 (θ) enters the drift term µϑ of the law of motion for the Pareto

share in (10). This implies that conditions that assure survival of both agents (i.e., conditions (i)

and (ii) in Proposition 3.2) can be restated as

lim
θց0

ν2 (θ)− ν1 (θ) >
1

2

[(
u1
)2

−
(
u2
)2]

(OA.9)

lim
θր1

ν2 (θ)− ν1 (θ) <
1

2

[(
u1
)2

−
(
u2
)2]

. (OA.10)

where the left-hand sides are given by Proposition OA.1. These conditions show that differences

in patience must compensate for differences in belief distortions in order for the agents to survive.

For instance, if agent 1’s beliefs are less accurate than agent 2’s beliefs,
∣∣u1
∣∣ >

∣∣u2
∣∣, then at the

left boundary, agent 2 has to be sufficiently more impatient than agent 1 to guarantee survival of

agent 1.

The left panel of Figure OA.2 displays the behavior of relative patience ν2 (θ) − ν1 (θ) in the

interior of the state space for three different economies. Under CRRA preferences, the relative

patience would be identically zero. The dash-dotted line represents a high risk aversion economy

in which both survival conditions from Proposition 3.2 (equivalent to conditions (OA.9)–(OA.10))

hold and both agents survive. The dashed line corresponds to a parameterization that is close to the

CRRA case when only the survival condition for the rational agent 2 is satisfied. At the left bound-

ary, relative patience is not sufficiently high to exceed the ‘survival threshold’ 1
2

[(
u1
)2

−
(
u2
)2]

.

Finally, the solid line captures a low risk aversion economy in which both attracting conditions

from Proposition 3.2 hold and each of the agents dominates with a strictly positive probability.

The behavior of relative patience directly affects the dynamics of the state variable θ. An
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application of Itô’s lemma yields

dθt = θt (1− θt)
[
ν2t − ν1t +

(
θtu

1 + (1− θt) u
2
) (
u2 − u1

)]
dt+ (OA.11)

+ θt (1− θt)
(
u1 − u2

)
dWt.

The right panel of Figure OA.2 depicts the impact of relative patience on the drift coefficient of the

Pareto share process. The drift vanishes at the boundaries and the boundaries are unattainable (a

reflection of the Inada conditions), but sufficiently large positive (negative) slopes at the left (right)

boundaries assure the existence of a nondegenerate long-run distribution of the Pareto share.2

OA.4.3 Imperfectly correlated shocks

The economy in the paper is driven by a scalar Brownian motion shock W . A natural question

arises what happens if there are multiple shocks over which the agents disagree and which are only

imperfectly correlated with the innovations to the aggregate endowment. The answer is rather

straightforward. Shocks to aggregate endowment can be orthogonalized and conditioned out of the

problem, and the remaining problem then maps directly into the original setup.

In particular, consider a modification of the stochastic structure of the economy. The filtered

probability space (Ω,F , {Ft} , P ) with an augmented filtration defined by a family of σ-algebras

{Ft} , t ≥ 0 generated by a bivariate Brownian motionW =
(
W 1,W 2

)
with correlated innovations,

Corr
(
dW 1

t , dW
2
t

)
= ϕdt. The aggregate endowment is driven by the first component of W ,

d log Yt = µydt+ σydW
1
t , Y0 > 0. (OA.12)

Agents n ∈ {1, 2} disagree about the evolution of the second component ofW . The ratio of their

beliefs Qn relative to the true probability measure P is given by the Radon-Nikodým derivative

(
dQn

dP

)

t

=̇Mn
t = exp

(
−
1

2

∫ t

0
|uns |

2 ds+

∫ t

0
uns dW

2
s

)
.

The processW 2 can be interpreted as a betting device that has no fundamental role in the economy,

but its realizations are still observable to both agents and the agents can contract upon them. It

is not difficult to imagine that such betting devices exist in the real world, although, as discussed

in Section OA.5.3 of this appendix, it is harder to think about appropriate calibrations of the

magnitude of these belief distortions.

The law of motion for the aggregate endowment can be rewritten as

d log Yt = µydt+ σy
(
dW 1

t − ϕdW 2
t

)
+ ϕσydW

2
t , Y0 > 0,

2Similar techniques, which extend the formulation of the representative agent provided by Negishi (1960) to
representations with nonconstant Pareto weights, can be used to study models with incomplete markets where
changes in the Pareto weights reflect the tightness of the binding constraints. See Cuoco and He (2001) for a
general approach in discrete time and Basak and Cuoco (1998) for a model with restricted stock market participation
in continuous time. Jouini and Napp (2007) approach the problem from a different angle to show that a planner’s
problem formulation with constant Pareto weights is in general not feasible under heterogeneous beliefs.
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where the innovation dW 1
t − ϕdW 2

t is uncorrelated with dW 2
t .

Recall that the drift µy of the aggregate endowment process does not influence the survival

thresholds because it is perceived symmetrically by both agents, and is thus cancelled out from

the formula for the relative patience (this would not be the case if we considered heterogeneity in

IES). The same is true about the contribution of the random component σy
(
dW 1

t − ϕdW 2
t

)
in the

evolution of the aggregate endowment process that both agents agree upon. The derivation thus

now proceeds as before, with ϕσy replacing σy. The resulting formulas for the limits of relative

patience are

lim
θց0

ν2 (θ)− ν1 (θ) =
γ − ρ

ρ

[
(
u1 − u2

)
ϕσy +

1

2

(
u1 − u2

)2

γ

]
,

lim
θր1

ν2 (θ)− ν1 (θ) =
γ − ρ

ρ

[
(
u1 − u2

)
ϕσy −

1

2

(
u1 − u2

)2

γ

]
.

These formulas then enter the survival thresholds in Proposition OA.1. Recall that a sufficient con-

dition for the existence of a nondegenerate long-run equilibrium is given by the pair of inequalities

lim
θց0

[
ν2 (θ)− ν1 (θ)

]
>

1

2

[(
u1
)2

−
(
u2
)2]

,

lim
θր1

[
ν2 (θ)− ν1 (θ)

]
<

1

2

[(
u1
)2

−
(
u2
)2]

.

The irrelevance of the shock component that is orthogonal to the shock over which the agents

disagree also suggests a possible decentralization. Consider the decentralization using a risk-free

infinitesimal bond and two infinitesimal risky assets G and H that pay normalized cash flows

dGt = σgdW
1
t , dHt = σhdW

2
t .

When θ ց 0, agent 2 holds the aggregate wealth and thus π2g (0) = σy/σg and π2h (0) = 0.

Equilibrium excess returns on the two risky assets G and H then are

[
−ϕu2 + γσy

]
σg and

[
−u2 + ϕγσy

]
σh,

and agent 1 with infinitesimal wealth holds a portfolio with wealth shares

π2g (0) =
σy
σg

and π2h (0) =
u1 − u2

γσh
.

The amount of total risk held by both agents thus corresponds to the one-shock example. They

both hold unlevered stock positions (see πng (0) + πnh (0) for the case σg = σh = σy), and bet on

their belief differences using asset H, irrespective of its correlation ϕ with aggregate stock.

The problem can then be naturally extended to the case of multiple shocks.

12



OA.4.4 Survival regions under mirror belief distortions

Under separable CRRA preferences, the case when belief distortions are symmetric around zero,

u1 = −u2 = u > 0, is rather delicate. In this case, both agents survive, but the state variable

θ (or, equivalently, ϑ) does not have a stationary distribution. A formal argument is provided in

the proof of Corollary 4.2. Intuitively, the conditional distribution of θ gets pulled toward both

boundaries, and states when one of the agents has a dominant share of wealth are ever more likely.

However, the boundaries are not attracting, and thus given an arbitrary θ0 ∈ (0, 1), the process θ

visits every θ̄ ∈ (0, 1), P -a.s. None of the agents vanishes with a strictly positive probability, yet a

stationary distribution does not exist.

When preferences are not separable, this issue generally does not occur. The parameter space

(γ, ρ) is divided into four regions, and one of the survival outcomes stated in the main survival

proposition holds in the interior of each of these regions.

Figure 3 in the main paper considers the case of an optimistic agent 1 and a pessimistic agent

2. The right panel of that figure plots the case of exactly mirror distortions, u1 = −u2 = 0.025.

The division of the parameter space into the four survival regions occurs along the diagonal (the

CRRA parameterization) and along a vertical line at risk aversion level γ = |un| /σy.

Figure OA.3 depicts perturbations of this belief parameterization (i.e., alternative perturbations

of the belief parameters from the right panel of Figure 3). The thin dotted diagonal line represents

the CRRA parameterizations.

The second and third panels of Figure OA.3 also reveal the cases when a pessimistic agent with

a larger magnitude of the belief distortion can dominate the economy. This can only happen when

u1 + u2 + 2σy > 0, i.e., when the (negative) sum of the two belief distortions is close to zero, and

only when risk aversion is smaller than the inverse of IES. In this region, IES is so low that the

relatively more optimistic agent has a sufficiently low saving motive vis-à-vis the high perceived

returns on his portfolio, which more than compensates for the willingness of the pessimistic agent

to sacrifice high expected returns in order to insure bad outcomes.

OA.4.5 Separable preferences and relative entropy

Under separable CRRA preferences, the dynamics of the Pareto share in (10) do not depend on

the characteristics of the endowment process but only on the belief distortions of the two agents.

Separable utility is obtained as a special case of the variational utility (3)–(4) with an optimal

discount rate choice νn = β where β is the time preference coefficient and the period utility

function F (C, β)
.
= U (C). The first-order condition for the planner’s problem leads to the static

equation
U ′
(
C2
t

)

U ′
(
C1
t

) =
λ̄10
λ̄20

M1
t

M2
t

.
=
λ̄1t
λ̄2t
. (OA.13)

Survival analysis in the separable case thus corresponds to analyzing a sequence of state- and

time-indexed static problems that are interlinked only by the initial Pareto weights λ̄n0 and the

exogenous evolution of belief distortions Mn. For example, when agent 1 has a constant belief

distortion u1 6= 0 and agent 2 is rational, then M1 is a strictly positive supermartingale under P
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Figure OA.3: Survival regions for an optimistic agent 1 and a pessimistic agent 2 when their beliefs are

close to symmetric (see legend of each plot). Volatility of aggregate endowment is σy = 0.02.

with limt→∞M1
t = 0 (P -a.s.) and M2

t ≡ 1. Consequently,

lim
t→∞

U ′
(
C2
t

)

U ′
(
C1
t

) = 0, P -a.s.

For a class of utility functions that includes the CRRA utility, this implies limt→∞ ζt/ (1− ζt) = 0

(P -a.s.) and agent 1 thus becomes extinct under P . Kogan, Ross, Wang, and Westerfield (2017)

analyze this relationship for a general class of period utility functions.3

3Applying Itô’s lemma to ϑt = log
(

λ̄1
t/λ̄

2
t

)

defined in (OA.13) also yields the law of motion (10) with ν2
t − ν1

t = 0,
consistently with above discussion.
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The result can be immediately extended to an N -agent economy where the first-order condition

(OA.13) has to hold for any pair of agents. Pairwise comparisons of belief distortions then yield

relative survival results in terms of relative wealth shares of individual agents. Ordering these

relative survival results yields the ‘survival indices’ in Yan (2008) or Muraviev (2013). Massari

(2017) links survival conditions to a comparison of agents’ beliefs with equilibrium prices as the

relevant representative market belief.

Similarly, the simple structure of condition (OA.13) also implies the belief distortion processes

Mn can embed richer dynamics of agents’ subjective beliefs that include, for example, Bayesian

updating or time variation in belief biases, as long as there is a way to evaluate the asymptotic

behavior of M1
t /M

2
t in (OA.13). Such extensions are harder to incorporate in the nonseparable

preference framework because the behavior of M1
t /M

2
t alone is not sufficient to evaluate long-run

consumption allocations.

OA.5 Equilibrium dynamics and evolution of wealth

This section investigates the equilibrium allocations and agents’ decision in the interior of the state

space, and the evolution of the consumption distribution over time. I start by theoretically estab-

lishing that the rate of convergence of the distribution is exponential, and then provide numerical

solutions of the planner’s problem (9) and the associated decentralization. I show using a series of

examples that agents with incorrect beliefs can indeed have a quantitatively substantial impact on

the wealth dynamics, and discuss the dependence of these dynamics on the preference and belief

distortion parameters.

OA.5.1 Exponential rate of convergence

When a stationary distribution for the Pareto share θ exists, convergence of the process to its

stationary distribution occurs at an exponential rate, so that the process θ does not exhibit strong

dependence properties. I state this in the paper as a fact. This result is defined and proven precisely

in the following Proposition.

Proposition OA.1 Under the sufficient conditions for survival of both agents, the process θ is

ρ-mixing with an exponential decay rate, i.e., there exist constants B > 0 and δ ∈ (0, 1) such that

for any square-integrable function φ ∈ L2 where

L2 =

{
φ : (0, 1) → R : ‖φ‖ =̇

(∫ 1

0
|φ (θ)|2 q (θ) dθ

)1

2

<∞

}
,

we have

sup
‖φ‖=1

∥∥∥∥E
[
φ (θt) | θ0 = θ̄0

]
−

∫ 1

0
φ (θ) q (θ) dθ

∥∥∥∥ =̇ ρt ≤ Be−δt.

Proof. Chen, Hansen, and Carrasco (2010) show that the sufficient conditions for exponential
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Figure OA.4: Left panel : Difference in consumption-wealth ratios
(
ξ2
)−1

−
(
ξ1
)−1

as a function of the

consumption share ζ1 of agent 1, plotted for different levels of intertemporal elasticity of substitution. The

remaining parameters are u1 = 0.25, u2 = 0, RA = 2, β = 0.05, µy = 0.02, σy = 0.02. Right panel : Wealth

shares πn of the two agents invested in the claim to aggregate endowment as functions of the consumption

share ζ1 of agent 1, plotted for different levels of risk aversion. The remaining parameters are u1 = 0.25,

u2 = 0, IES = 1.5, β = 0.05, µy = 0.02, σy = 0.02, and individual curves correspond to different levels of

risk aversion. Wealth share curves originating at 1 for ζ1 = 1 (ζ1 = 0) belong to agent 1 (agent 2).

convergence in L2 norm are

lim inf
θց0

(
µθ (θ)

|σθ (θ)|
−

|σ′ (θ)|′

2

)
> 0 and lim inf

θր1

(
µθ (θ)

|σθ (θ)|
−

|σ′ (θ)|′

2

)
< 0

These conditions are satisfied by imposing the same bounds as those for the finiteness of the speed

measure defined in (20)

lim
θց0

M [θ, θh] >∞ and lim
θր1

M [θl, θ] for some θl, θh ∈ (0, 1) .

which in turn coincide with those for the existence of the stationary density for θ.

OA.5.2 Survival forces in the interior of the state space

The two essential components of the survival mechanism identified in Section 3.2 are the propensity

to save and the portfolio allocation of the two agents. The left panel in Figure OA.4 displays the

effect of propensity to save in the form of difference in the consumption-wealth ratios [ξn (θ)]−1,

which are primarily driven by the IES. For the case of IES = 1, the difference is zero since each

agent consumes a fraction β of her wealth per unit of time, and the saving channel is inactive.

A higher IES improves the survival chances of the agent who is relatively more optimistic about

the return on her own wealth, as she is willing to tilt her consumption profile more toward the

future. In the graph, high levels of IES are conducive to survival of both agents—the difference in

consumption rates
(
ξ2
)−1

−
(
ξ1
)−1

is positive when agent 1 is negligible, and negative when agent
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2 is negligible.

The portfolio allocation mechanism is depicted in the right panel of Figure OA.4. The share of

wealth invested in the risky asset is primarily driven by the risk aversion parameter. The graph

shows the optimistic agent 1’s wealth share π1 invested in the risky asset in blue (upper three lines),

and π2 in red (lower three lines). As the consumption share of agent n converges to 1, her portfolio

allocation πn → 1, reflecting the fact that the large agent’s portfolio position must converge to the

market portfolio.

A higher risk aversion (dash-dotted lines) limits the amount of leverage, and the portfolio posi-

tions are closer to one. This in turn limits the impact of speculative motives on market outcomes,

and the role of the risk premium channel increases. Notice that some degree of speculative behavior

is necessary for the survival of a pessimistic agent—when risk aversion is high, she does not choose

a sufficiently large short stock position that would make her sufficiently optimistic about the return

on her own wealth and outsave the rational agent when IES > 1.

OA.5.3 Stationary distributions and evolution over time

The full solution of the model allows us to study the evolution of the wealth distribution over

time. In empirical applications, it is advantageous when the time-series of observable variables

converge sufficiently quickly to their long-run distributions from any initial condition, so that data

observed over finite horizons are a representative sample of the stationary distribution. For instance,

Yan (2008) conducts numerical experiments under separable utility when one of the agents always

vanishes, and shows that the rate of extinction can be very slow. Proposition 3.2 gives sufficient

conditions for the existence of a unique stationary distribution for θ but it does not say anything

about the rate of convergence.

Proposition OA.1 has shown that under the conditions from Proposition 3.2, convergence for

the state variable θ occurs at an exponential rate, so that the process θ does not exhibit strong

dependence properties. At the same time, the exponent in the rate calculation can still be small,

and I therefore the full solution of the model numerically to investigate the dynamics.

For the sake of completeness, the top left graph of Figure OA.5 replicates Figure 4, showing the

densities q
(
ζ1
)
for the stationary distribution of the consumption share ζ1 in example economies

where both agents survive, for the case of an optimistic agent 1 and correct agent 2 and alternative

levels of risk aversion. The remaining three graphs in Figure OA.5 plot the conditional distribution

of the consumption share ζ1 (θt) of the optimistic agent 1 conditional on ζ1 (θ0) = 0.5 for different

time horizons t. These are computed from the dynamics of the state variable θ in equation (OA.11)

by solving the associated Kolmogorov forward equation

∂pθt (θ)

∂t
+

∂

∂θ

[
θµθ (θ) p

θ
t (θ)

]
−

1

2

∂2

∂θ2

[
(θσθ (θ))

2 pθt (θ)
]
= 0

for the conditional density pθt (θ) of θ with the initial condition pθ0 (θ) = δθ0 (θ), where δ is the Dirac
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Figure OA.5: The top left panel depicts the stationary distributions for the consumption share ζ1 (θ) of the

agent with optimistically distorted beliefs. All models are parameterized by u1 = 0.25, u2 = 0, IES = 1.5,

β = 0.05, µy = 0.02, σy = 0.02, and differ in levels of risk aversion, shown in the legend. The remaining

three panels plot the distributions of ζ1 (θt) conditional on ζ
1 (θ0) = 0.5 for different time horizons t. In the

top right panel (risk aversion = 8), the economy has a nondegenerate long-run distribution. In the bottom

left panel (risk aversion = 0.75), the correct agent 2 dominates, and in the bottom right panel (risk aversion

= 0.25), each agent dominates with a strictly positive probability.

delta function, and then transforming to obtain the conditional density for ζ1

pt
(
ζ1 (θ)

)
= pθt (θ)

[
∂ζ1

∂θ
(θ)

]−1

.

The graphs show the evolution of the conditional distribution for three cases. In the top right

graph, the conditional distribution converges to a nondegenerate long-run distribution and both

agents survive. In the bottom left graph, the mass of the conditional distribution shifts to the left

and agent 2 dominates. Finally, in the bottom right graph, the mass of the conditional distribution

shifts out toward both boundaries, and either agent dominates with a strictly positive probability.

The speed of the evolution of the conditional distribution depends on the magnitude of the

belief distortions and the level of risk aversion in the economy. When risk aversion is high, agents
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are not willing to engage in large bets on the realizations of the Brownian motion W , and wealth

and consumption shares evolve only slowly. In the example in Figure OA.5, it takes roughly

2,500 periods until the density pt is visually indistinguishable from the stationary density. As risk

aversion decreases, and agents are willing to speculate more, the evolution of the conditional density

pt speeds up.

While the evolution of the conditional density in Figure OA.5 may appear rather slow, the

process can be accelerated substantially. One possible way is to increase the magnitude of the

belief distortions but very large belief distortions may be rejected as empirically implausible.

A more fundamental argument relies on the appropriate interpretation of the modeled risk in

this economy. In the model, the nature of risk is extremely simplistic and agents disagree only

about the distribution of the aggregate shock. In reality, there are many other sources of aggregate

or idiosyncratic risk about which the agents can disagree and write contracts on, and agents with

heterogeneous beliefs would also find it optimal to introduce additional such betting devices, even

if these are otherwise economically irrelevant. Fedyk, Heyerdahl-Larsen, and Walden (2013) show

in an economy with CRRA preferences that if agents disagree about multiple sources of risk, the

speed of extinction of the relatively more incorrect agent can be accelerated substantially. The

same mechanism operates under recursive utility, increasing the magnitude of wealth fluctuations

and the rate of convergence of pt
(
ζ1
)
to the stationary density q

(
ζ1
)
when both agents survive in

the long run.4 The main message arising from these considerations is that the speed of extinction

or rate of convergence to the stationary distribution in stylized models with very few sources of

risk should not be viewed as a strong quantitative test of the model.

OA.6 Comparison to economies with only terminal consumption

In this paper, I analyze infinite-horizon economies with intertemporal consumption choice. Kogan,

Ross, Wang, and Westerfield (2006) (KRWW) deal with a different framework with two agents

endowed with CRRA preferences. In their economy, there is no intermediate consumption and the

agents split and consume an aggregate dividend payoff at a terminal date T . The dividend evolves

according to a geometric Brownian motion (OA.12) as in my paper, and agents can continuously

re-trade claims on the terminal payoff during the lifetime of the economy.

The notion of survival in that framework is captured by analyzing the limit of the consumption

share distribution in a sequence of economies as T ր ∞. This requires taking a stand on the initial

distribution of wealth in each horizon-T economy. Kogan, Ross, Wang, and Westerfield (2006) use

the price of a bond maturing at time T as numeraire and define the initial wealth in the economy

with horizon T as the time-0 value of the terminal payoff. Then they impose equal initial wealth

shares of the two agents in each of the finite horizon economies.

However, such a sequence of economies cannot be directly translated into a single dynamically

consistent infinite-horizon economy with intermediate consumption. It may be tempting to collect

4Section OA.4.3 provides an example with two imperfectly correlated Brownian motions. One concern from the
perspective of the survival results may be that belief distortions about multiple sources of risk can be reinterpreted
as one large belief distortion. This view is, with some qualifications, correct but the survival results show that agents
can coexist in the long run even under very large belief distortions.
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the terminal consumption allocations
(
C1
T , C

2
T

)
from the sequence of KRWW economies for T >

0 and view the resulting process as a solution to an intertemporal problem with intermediate

consumption. This reasoning is incorrect. Even if we impose equal initial wealth shares (A1
0 = A2

0)

in the infinite-horizon economy, this does not imply that, for each T , the time-0 values of equilibrium

consumption strips Cn
T consumed by the two agents are equal.

From the perspective of the Pareto problem that characterizes optimal allocations, this conclu-

sion is reflected in the choice of initial Pareto weights. In KRWW, the time-0 Pareto weights are

chosen so that the initial wealth shares of the two agents are identical, which requires the initial

Pareto share of the irrational agent to approach one as the terminal date T ր ∞. This mechanism

then has a material impact on asymptotic outcomes and allows an optimistic agent to ‘survive’ in

the sequence of planner’s problems. At the same time, the fact that time-0 Pareto weights vary

with horizon T directly reveals that the KRWW sequence of terminal consumption allocations does

not constitute an optimal intertemporal allocation for the two agents.

Nevertheless, there is an economically meaningful intertemporal counterpart to the analysis

from Kogan, Ross, Wang, and Westerfield (2006) in my setup as well. Without intermediate

consumption, long-run wealth accumulation depends only on agents’ portfolio choice and not on

their consumption-saving decision. In the economy with intermediate consumption, this corre-

sponds to the case of Epstein–Zin preferences with unitary IES (ρ = 1), in which case both agents’

consumption-wealth ratios [ξn (θ)]−1 are constant and equal to the time-preference parameter β.

Since survival results do not depend on β, the rate of consumption out of wealth can be made

arbitrarily small (β ց 0), so that most of current wealth arises from consumption in distant future,

and hence in this sense approximate an economy in which intermediate consumption is zero.

Even then, a comparison of survival regions from Section 4 in this paper for unitary IES with

those from Section 5 in KRWW reveals substantial differences in survival results. Despite the

fact that both specifications neutralize the consumption-saving decision as a way of generating

heterogeneity in wealth accumulation rates, and concentrate purely on the portfolio choice, the

results in KRWW differ because, as we have argued, their limit of the sequence of finite-horizon

economies does not correspond to a long-horizon limit in the corresponding intertemporal problem,

due to the re-normalization of the initial wealth shares for every horizon T .

The fact that the choice of initial wealth shares matters for survival results may seem puzzling

because the survival regions in my paper do not depend on the initial wealth distribution. The

reason is that in economies with intermediate consumption, consumption at distant dates con-

tributes only little to current wealth levels, and thus the reweighing of initial Pareto shares in order

to achieve equal initial wealth levels would have no effect on the survival results. On the other

hand, in an economy with only terminal consumption, wealth is equal to the present discounted

value of consumption at the terminal date T , and hence systematically manipulating the time-0

distribution of wealth also materially changes the outcome of the T ր ∞ limit of the distribution

of consumption Cn
T , n = 1, 2.

Kogan, Ross, Wang, and Westerfield (2006, Section 8) contrast their main results to what they

call a ‘heuristic partial equilibrium’ approach. This method constructs a homogeneous economy

injected with an infinitesimal agent with different beliefs under the assumption that she does not
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affect local price dynamics, and then compares the wealth growth rates of the two agents. This

method is analogous to the approach taken in my paper, and, as expected, delivers the same survival

regions in KRWW as those derived in my paper under unitary IES.

While KRWW provide reasoning why their ‘heuristic’ approach is not appropriate in their

setup, my results in fact show that it is exactly the correct approach in a fully intertemporal

infinite-horizon economy with intermediate consumption. The proof of the argument follows from

Proposition 5.1 and Corollary 5.2 from Section 5. These results show that in the model with

intertemporal consumption choice considered in my paper, the return on aggregate wealth as well

as prices of individual finite-horizon cash flows from the aggregate endowment (consumption strips)

converge to their homogeneous economy counterparts and thus the ‘partial equilibrium’ approach

is actually the correct method for my framework under general equilibrium.

However, these results do not translate to the setup considered in KRWW. Although prices

of individual consumption strips converge for every fixed T ≥ 0, this convergence is not uniform

on T ∈ [0,∞). This absence of uniformity in general invalidates the result on converging returns

and prices for the limit as T ր ∞. Since the approach in KRWW exactly relies on the limiting

behavior of the value and distribution of this consumption strip as T ր ∞, results from my paper

do not apply in the KRWW economy and vice versa. This highlights the fundamental difference

between the insights from Kogan, Ross, Wang, and Westerfield (2006) and those from infinite-

horizon economies with intertemporal consumption choice.

OA.7 Endogenous subjective beliefs

The analysis in this paper focuses on the case of exogenously specified time-invariant belief distor-

tions. Agents are firm believers in their probability models, and do not use new data to update their

beliefs. This can be interpreted as the strongest form of incorrect beliefs, and, at least seemingly,

as a bias against survival of agents whose beliefs are initially incorrect. However, the methodology

can be applied to more complex belief distortions, including endogenously determined ones.

For instance, a natural question is to ask what happens when agents are allowed to learn.

Learning can be incorporated into the current framework by introducing a law of motion that

represents the Bayesian updating of the belief distortions un. These belief distortions become new

state variables.

Blume and Easley (2006) provide a detailed analysis of the impact of Bayesian learning on

survival under separable utility, and show that learning in general aids survival of agents who

start with incorrect beliefs, by reducing their belief distortions. The message is much less clear

in the nonseparable preference case. For instance, Figure 2 shows that the survival region of a

pessimistic agent can shrink if her belief distortion diminishes. Whether the pessimist can learn

quickly enough so that her beliefs converge to rational expectations at a rate that allows survival

depends on the complexity of the learning problem, as shown by Blume and Easley (2006). The

limiting distribution of θ as t ր ∞ for the case of nonseparable preferences thus remains an open

question.

Subjective beliefs can also arise from other decision-theoretical models. For instance, Bhandari
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(2015) uses the dynamics of Pareto weights to study a model where wealth dynamics interact with

endogenous beliefs of agents concerned about model misspecification. Finally, formulas for survival

regions can be extended by incorporating heterogeneity in preferences, as in Dumas, Uppal, and

Wang (2000).

Here, I provide a more detailed outline of three specific problems. The first extension introduces

learning and leads to endogenously varying belief distortions un. The second extension incorporates

robust utility models as an example of subjective beliefs emerging from model uncertainty or

ambiguity aversion. While I do not solve these variants, I describe the solution method and suggest

interesting open questions. Answering these questions is left for future research. Finally, I discuss

the case of smooth ambiguity aversion introduced by Klibanoff, Marinacci, and Mukerji (2005,

2009) and compare the results from my paper to those of Guerdjikova and Sciubba (2015). The

case of smooth ambiguity aversion is distinct from other models of ambiguity averse preferences

because it does not reduce to an ex-post subjective belief, and involves an additional endogenous

change in the subjective discount rate.

OA.7.1 Model uncertainty and learning

Survival analysis in the previous sections assumed a constant belief distortion un. However, the

framework developed in the paper permits, with some added complexity, more general processes

that can be used to model the distortions. This allows one to incorporate agents who learn about

the true mean growth rate µy of aggregate endowment as they receive new information about the

evolution of the economy.

There are various ways of introducing learning into this model. One is to specify for agent n

a continuous prior Fn
0 (µ) on M ⊆ R, such that µy ∈ supp Fn

0 , and update the prior as new

information arrives. The disadvantage of this approach for implementation are unclear boundary

conditions at the boundaries of M.

Instead, I assume that the agent has in mind a set of K models that differ in the mean growth

rate. The set of models is represented by a vector of distorting components un = (unk)
K
k=1, with the

true model being ordered first, i.e., un1 = 0. At time t, the agent assigns a probability distribution

pnt = (pnkt)
K
k=1 to this vector. The vector pn0 denotes the prior distribution, independent of the

realizations of the Brownian motion W . In order to avoid pathologies, I assume pnk0 > 0 for

all k ∈ {1, . . . ,K}. As in the previous sections, agents agree to disagree about the subjective

probability measures Qn.

In the setup with separable utility, the aggregator f (C, V ) in (OA.3) is additive and linear

in V , and the law of iterated expectations can be utilized to solve the problem of a Bayesian

learner in two steps. First, calculate the continuation values in the recursive formula (OA.3)

conditional on a particular model, and then integrate out across models. This two-step solution

works because posterior distributions of a Bayesian learner are martingales under the subjective

probability measure of the learner.

This method cannot be used when f (C, V ) is not separable. Instead, I will show how to

approach the problem in a similar manner as one with a constant (or, more generally, exogenously

specified) distortion. I construct the appropriate distorting martingale that accounts for model
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uncertainty. The marginal distorted measure, integrated out across models, is again absolutely

continuous with respect to the true probability measure P . As a result, a modified discount factor

can be defined in the same way as in the paper, and the solution method for the planner’s problem

applies.

Recall that under model k, agent n perceives the trend component of the aggregate endowment

process to be µny,k = µy + unkσy. It is well-known from the literature on Bayesian updating (see

Wonham (1964)) that the evolution of the probability distribution across models for a Bayesian

learner follows

dpnt = ∆(pnt )
(
d log Yt −

(
µny
)′
pnt dt

)
, (OA.14)

where

∆ (pnt ) = |σy|
−2 (diag (pnt )− pnt (p

n
t )

′)µny

is the regression coefficient in the regression of the true state on the evolution of the observed

variable under the agent’s information set, and diag (p) is a diagonal matrix with elements of

vector p on the main diagonal.

The agent perceives the local trend component of the evolution of log Yt to be
(
µny
)′
pnt , and

thus

log Yt −

∫ t

0

(
µny
)′
pns ds

is a martingale under Qn. This leads to the construction of a Brownian motion W n under Qn

defined by

dW n
t ≡

d log Yt −
(
µny
)′
pnt dt

σy
= − (un)′ pnt dt+ dWt.

The Brownian motion W that is a martingale under the true measure is distorted by the trend

component (un)′ pnt under the subjective measure. The martingale

Mn
t = exp

(∫ t

0
−
1

2

[
(un)′ pns

]2
ds +

∫ t

0
(un)′ pns dWs

)

is therefore the distorting martingale for the case of a learning agent. The agent acts as if there was

a time-varying average distortion process ūnt = (un)′ pnt . The optimization problem of the fictitious

planner is extended by the filtering equation (OA.14) and the evolution of the modified discount

factor becomes

d log λ̄nt = −

[
νnt +

1

2

[
(un)′ pnt

]2
]
dt+ (un)′ pnt dWt.

Conjecturing a new Markov state Z =
(
λ̄′, Y,

(
p1
)′
,
(
p2
)′)′

, it is possible to derive a new version

of the HJB equation on a multidimensional but compact set with well-defined boundary conditions

that can be built up sequentially from solutions of lower-dimensional problems.

In the paper, I discuss that learning under nonseparable preferences may lead to conclusions that

are qualitatively different from those in Blume and Easley (2006), who find that learning in general

improves the survival chances of agents with incorrect beliefs. Under nonseparable preferences,

smaller distortions may actually constitute a disadvantage for survival, and thus learning, which
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diminishes the distortions over time, may have an adverse impact on survival. I leave an explicit

solution of this problem to future research.

OA.7.2 Robust utility

Endogenous subjective belief can also emerge from models of ambiguity aversion, for instance in the

case of multiple priors preferences (Gilboa and Schmeidler (1989), Epstein and Schneider (2003)) or

robust preferences (Hansen and Sargent (2001a,b)). Consider an agent who believes that the model

for the aggregate endowment dynamics is misspecified and views the dynamics of the aggregate

endowment

d log Yt = µydt+ σydWt, t ≥ 0

only as a reference model that approximates the true dynamics. Anderson, Hansen, and Sargent

(2003) and Skiadas (2003), among others, suggest modeling the misspecification by modifying the

continuation value problem (OA.5) as

λnt V
n
t = inf

un
sup
νn

E
Qn

u
t

[∫ ∞

t

λns

[
F (Cn

s , ν
n
s ) +

ηns
2

|uns |
2

]
ds

]
,

subject to the law of motion for the discount factor process

d log λnt = −νnt dt, t ≥ 0; λn0 = 1.

The measure Qn
u is specified by the Radon-Nikodým derivative

Mn
t = exp

(∫ t

0
−
1

2
(uns )

2 ds+

∫ t

0
uns dWs

)

and the explicit subindex expresses the fact that the minimization problem also includes the choice

of the appropriate subjective measure. The set of permissible processes un representing the set of

belief distortions contemplated by the agent needs to satisfy some regularity conditions like square

integrability.

The minimization over un expresses the agent’s fear about the realization of the worst case

scenario, characterized by the least favorable dynamics

d log Yt = µydt+ σy (u
n
t dt+ dW n

t ) ,

where W n is a Brownian motion under Qn
u. At the same time, the agent understands that speci-

fications that are statistically easy to discriminate from the approximate dynamics are unlikely to

be correct, and thus large distortions are penalized by the penalty process 1
2η

n |un|2. Anderson,

Hansen, and Sargent (2003) consider a constant ηn, while Maenhout (2004) makes ηn proportional

to the continuation value V n to retain homogeneity of the optimization problem. Epstein and Miao

(2003) and Uppal and Wang (2003) construct models with ambiguity aversion where the optimal

solution to the minimization problem involves a constant un. Bhandari (2015) uses the robust

preference structure of Hansen and Sargent to study wealth dynamics in a two-agent economy in
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a discrete-time environment. Endogenous belief distortions then emerge as part of the solution of

the problem and depend on the equilibrium dynamics of the wealth distribution.

Except for the penalty process in the objective function and the endogenous choice of the

distortion process un, the calculation of the continuation value is analogous to that introduced in

the paper. Optimal allocations in an economy with two agents endowed with robust preferences

are then found by solving a suitably modified planner’s problem.

Under separable preferences, agents who fear misspecification more (and therefore assign a lower

penalty θ to deviations from the reference model) choose a more distorted worst case scenario, which

worsens their survival chances.5 However, the results for constant belief distortions un indicate that

survival chances of the more fearful agents may well look much better for appropriate nonseparable

parameterizations of preferences.

This characterization of robust decision making suggests that it is possible to understand model

misspecification concerns emerging from robust preferences (or other forms of ambiguity aversion)

ex post as a specific endogenously generated belief distortion. Reverting the argument, the frame-

work introduced in this paper can be used to analyze long-run equilibria in heterogeneous agent

economies endowed with a much wider class of preferences than the constant belief distortions that

I focused on in the paper.

OA.7.3 Smooth ambiguity aversion

Guerdjikova and Sciubba (2015) study a discrete-time heterogeneous-preference and belief economy

with one agent endowed with separable preferences and another endowed with smooth ambiguity

averse preferences of the Klibanoff, Marinacci, and Mukerji (2005, 2009) type. This environment

requires extending our previous notation somewhat. Let time t = 0, 1, 2, . . . be discrete and let

there be K probability distributions {πk}
K
k=1 over the observed trajectories of aggregate endow-

ment Y with one-step ahead conditional distributions πk,t→t+1, and a posterior distribution pk,t

over πk. The data-generating probability measure P on (Ω,F , {Ft}) then has a one-step ahead

predictive distribution
∑K

k=1 πk,t→t+1pk,t. Agent’s n subjective belief Qn is characterized by a

time-t subjective posterior pnk,t updated using Bayes’ rule, and hence the subjective one-step ahead

predictive distribution is given by
∑K

k=1 πk,t→t+1p
n
k,t. The martingale representing the subjective

belief distortion follows
Mn

t+1

Mn
t

=

∑K
k=1 πk,t→t+1p

n
k,t∑K

k=1 πk,t→t+1pk,t
.

Agent’s ambiguity concerns are expressed by the preference recursion

V n
t =

(
1− e−β

)
U (Cn

t ) + e−βφ−1
n

(
N∑

k=1

φn
(
Eπk

t

[
V n
t+1

])
pnk,t

)
, (OA.15)

where Eπk
t [·] is the conditional expectation of Vt+1 under the distribution πk,t→t+1, and the term(

1− e−β
)
represents convenient scaling utilized below. The period utility function U (C) satisfies

5An exact statement about survival naturally depends on the model and the choice of the process ηn for each of
the agents.
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Inada conditions and aggregate endowment is uniformly bounded above and away from zero as in

Sandroni (2000) and Blume and Easley (2006).

Consider the case when agent n = 1 has expected utility (i.e., is ambiguity neutral with φ1 (x) =

x). Then the first-order condition for the optimal allocation analogous to (OA.13) implies

λ̄1tU
′
(
C1
t+1

) K∑

k=1

πk,t→t+1p
1
k,t = λ̄2tU

′
(
C2
t+1

)
∑N

k=1 φ
′
2 (E

πk
t [Vt+1])πk,t→t+1p

2
k,t

φ′2

(
φ−1
2

(∑K
k=1 (E

πk
t [Vt+1]) p2k,t

))

where λ̄nt are planner’s time-t Pareto weights. Fixing time-0 Pareto weights, accumulating over

periods t = 0, 1, . . . T − 1, reorganizing and taking the limit yields the expression from Lemma 5.3

in Guerdjikova and Sciubba (2015):

lim
T→∞

1

T
log

U ′
(
C2
T

)

U ′
(
C1
T

) = lim
T→∞

1

T

T−1∑

t=0

[
log

K∑

k=1

πk,t→t+1p
1
k,t − log

∑N
k=1 φ

′
2 (E

πk
t [Vt+1]) πk,t→t+1p

2
k,t∑N

k=1 φ
′
2 (E

πk
t [Vt+1]) p2k,t

]

− lim
T→∞

1

T

T−1∑

t=0

log

∑N
k=1 φ

′
2 (E

πk
t [Vt+1]) p

2
k,t

φ′2

(
φ−1
2

(∑K
k=1 (E

πk
t [Vt+1]) p2k,t

)) .

Given the assumptions on the economy, when the left-hand side converges to a positive number, it

must be that limT→∞C2
T → 0.

The term in brackets on the right hand side is the logarithm of the ratio of the subjective

belief of agent 1 and the ‘effective belief’ of agent 2. When φ2 (x) = x and hence both agents are

subjective expected utility maximizers, this term corresponds to logM1
t /M

2
t from the separable

utility case in (OA.13). The term on the second line represents the ‘discount rate’ effect emerging

from smooth ambiguity aversion and is zero when φ2 (x) = x. In contrast to multiple-prior or robust

preference specifications of ambiguity aversion, smooth ambiguity aversion does not manifest itself

as an effective subjective belief only but involves an endogenous change in effective time preference.

When agent 1 has correct beliefs, then the effective belief of agent 2, which is represented as

a belief distortion relative to the data-generating process, always acts against agent’s 2 survival.

As long as the effective belief distortion does not vanish, the first limit on the right-hand side

converges to a positive number P -a.s., which, absent the second term on the right-hand side,

implies limT→∞C2
T → 0, P -a.s. However, Guerdjikova and Sciubba (2015) (Proposition 5.12)

show that when both agents have correct beliefs (P = Q1 = Q2 or, equivalently, µ = µ1 = µ2) and

agent 2 exhibits decreasing absolute ambiguity aversion (DAAA, −φ′′/φ′ is non-increasing), then

the discount rate effect can be sufficiently strong to overcome the adverse effect of the effective

belief, and agent 2 can in fact dominate. The reason is that DAAA makes ambiguity concerns

about low outcomes more pronounced than about high outcomes, and generates precautionary

behavior manifested through more patience. On the other hand, under increasing or constant

absolute ambiguity aversion, it is agent 1 who dominates in the long run.

These results thus state that in a model with heterogeneous preferences (expected utility vs

smooth ambiguity aversion), the specification of preferences has a tangible impact on the survival

results. This is in contrast to Sandroni (2000) and Blume and Easley (2006) who, in the same
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economy, find preferences to be immaterial for survival. By continuity, a DAAA agent 2 can

dominate the economy even when she has incorrect beliefs but agent’s 1 beliefs are correct (P =

Q1 6= Q2) and Guerdjikova and Sciubba (2015) construct such an example. Contrary to the

framework in my paper, such a specification combines the interaction of heterogeneity in preferences

and beliefs, similar to the analysis in Yan (2008).

The reason why heterogeneity matters in the case of Guerdjikova and Sciubba (2015) even in

a bounded economy is the non-separability of preferences embedded in (OA.15), analogous the

problem studied in my paper. Under nonseparable preferences, the marginal rate of substitution

between time zero and t does not depend only on consumption in those two periods as in (OA.13)

but also on the entire path between those two times. Differences in consumption paths can therefore

have a nontrivial long-run implication on the marginal rate of substitution between time zero and

t, and hence also on the asymptotic level of consumption.

OA.7.3.1 A continuous-time limit

While the economic mechanisms central to my paper do not hinge upon the continuous-time specifi-

cation (see also Dindo (2015)), it is interesting to directly compare the results derived under smooth

ambiguity aversion with those analyzed in the continuous-time setup under recursive preferences.

Skiadas (2013) studies a continuous-time limit of smooth ambiguity averse preferences that include

(OA.15) and the case when uncertainty converges in the limit to the Brownian information case.

The limit he constructs is analogous to that outlined for the case of Epstein–Zin preferences in

Section OA.2.1 of this appendix. Consider a version of the economy with time period of length ε.

Then the counterpart of (OA.15) is

V n
t =

(
1− e−βε

)
U (Cn

t ) + e−βεφ−1
n

(
N∑

k=1

φn (E
πk
t [Vt+ε]) p

n
k,t

)
. (OA.16)

The key aspect is the scaling of the distributions pn and πk that characterize the measure Qn

when taking the limit as ε→ 0. Convergence to the Brownian information setup requires that the

evolution of aggregate endowment (1) under the probability measure πk satisfies

Eπk
t [log Yt+ε] = log Yt + µky,tε+ o (ε)

V arπk
t [log Yt+ε] = σ2yε+ o (ε)

where µky,t and σy are independent of ε. Processes µky,t, k = 1, . . . ,K are required to satisfy

conditions that assure that measures P and Qn are equivalent, e.g., the Novikov condition. Hence,

as required, P and Qn imply the same volatility σy of log Yt, and differ in the drifts of log Yt, which

are µy and
∑K

k=1 µ
k
y,tp

n
k,t, respectively.

Skiadas (2013) shows that under these assumptions, (OA.16) can be written as

V n
t =

(
1− e−βε

)
U (Cn

t ) + e−βεEQn

t

[
V n
t+ε

]
+ o (ε) ,
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and hence the preferences converge to a separable expected utility case with subjective belief Qn.

Ambiguity aversion vanishes in the continuous-time limit because of the smoothness of the function

φn. In the limit, individual probability distributions πk,t→t+ε constitute small perturbations to the

subjective belief formed by
∑K

k=1 πk,t→t+εp
n
k,t and hence only have a second-order effect which is

immaterial under a smooth φn. Skiadas (2013) also shows that the same result holds when the setup

is extended with Poisson uncertainty, hence covering a large class of setups used in economics. This

result implies that in the continuous-time limit, the analysis by Guerdjikova and Sciubba (2015)

is subsumed by the results in Sandroni (2000) and Blume and Easley (2006), and it is the agent

which most accurate belief who survives.

It should be noted that Skiadas (2013) studies a broader class of smooth ambiguity averse

preferences than those covered in Guerdjikova and Sciubba (2015). In particular, he replaces

Eπk
t [Vt+1] in (OA.15) with another certainty equivalent, ψ−1

n (Eπk
t [ψn (Vt+1)]) as in Ju and Miao

(2012). This extension then converges in the continuous-time limit to the Kreps and Porteus

(1978) recursive specification analyzed in this paper. There are also other ways of constructing the

continuous-time limit of smooth ambiguity averse preferences which preserve ambiguity aversion

in the continuous-time model, relying on alternative assumptions about scaling of the function φn

as ε → 0 (see, for instance, Hansen and Sargent (2011) or Suzuki (2018)). These are interesting

problems but do not change the distinct focus of this paper on pure belief heterogeneity as opposed

to preference heterogeneity in Guerdjikova and Sciubba (2015).

OA.8 A discrete-time formulation

A recursification of the planner’s problem introduced in Section 2 can also be derived in discrete

time. A convenient transformation of the continuation value process (OA.1)

V̂t =
Ṽ 1−ρ
t

1− ρ

yields the recursion

V̂t =
(
1− e−β

) C1−ρ
t

1− ρ
+ e−β 1

1− ρ

(
EQ

t

[(
(1− ρ) V̂t+1

) 1−γ

1−ρ

]) 1−ρ

1−γ

,

with the homogeneity property V̂t = v̂tC
1−ρ
t where v̂t satisfies the recursion

v̂t =
(
1− e−β

) 1

1− ρ
+ e−β 1

1− ρ


EQ

t



(
(1− ρ) v̂t+1

(
Ct+1

Ct

)1−ρ
) 1−γ

1−ρ






1−ρ

1−γ

The time-t planner’s problem corresponding to that introduced in Section 2.3 is to find the value

function

J
(
λ̄t, Yt

)
= sup

(C1,C2)

λ̄1t V̂
1
t + λ̄2t V̂

2
t

28



where λ̄1t are time-t planner’s weights, subject to the feasibility constraints. The first-order condi-

tions with respect to time-t and t+ 1 consumption imply

(
C1
t

C2
t

)ρ

=
λ̄1t
λ̄2t
,

(
C1
t+1

C2
t+1

)ρ

=
κ1t+1

κ2t+1

λ̄1t
λ̄2t

where

κnt+1 =




(
(1− ρ) V̂ n

t+1

) 1−γ

1−ρ

EQn

t

[(
(1− ρ) V̂ n

t+1

) 1−γ

1−ρ

]




ρ−γ
1−γ

Mn
t+1

Mn
t

.

and Mn is the Radon–Nikodým derivative representing the subjective belief of agent n, Mn
t

.
=

(dQn/dP )t. The first-order conditions indicate that a recursification of the problem requires us to

choose
λ̄1t+1

λ̄2t+1

.
=
κ1t+1

κ2t+1

λ̄1t
λ̄2t
.

Consequently, we can define ϑt = log
(
λ̄1t /λ̄

2
t

)
and consumption shares ζnt = Cn

t /Yt as in the main

text. When aggregate endowment growth and agents’ subjective beliefs are iid, i.e.,

Yt+1

Yt
= gy,t+1,

Mn
t+1

Mn
t

= mn (gy,t+1)

where gy,t+1 is an iid random variable, then the planner’s value function can be written as J
(
λ̄t, Yt

)
=

Y 1−ρ
t λ̄2t J̃ (ϑt) where J̃ (ϑt) satisfies

J̃ (ϑt) = ϑt
(
ζ1 (ϑt)

)1−ρ
v̂1 (ϑt) +

(
ζ2 (ϑt)

)1−ρ
v̂2 (ϑt)

with optimal consumption shares satisfying ζ1 + ζ2 = 1 and

(
ζ1 (ϑt)

ζ2 (ϑt)

)ρ

= exp (ϑt) . (OA.17)

The law of motion for the state variable ϑt is given by

ϑt+1 = log
κ1t+1

κ2t+1

+ ϑt (OA.18)

with

κnt+1 =




(
(1− ρ) v̂n (ϑt+1) [ζ

n (ϑt+1) gy,t+1]
1−ρ
) 1−γ

1−ρ

EQn

t

[(
(1− ρ) v̂n (ϑt+1) [ζn (ϑt+1) gy,t+1]

1−ρ
) 1−γ

1−ρ

]




ρ−γ

1−γ

mn (gy,t+1) (OA.19)
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and the continuation value recursions

v̂n (ϑt) =
1− e−β

1− ρ
+

e−β

1− ρ


EQn

t



(
(1− ρ) v̂n (ϑt+1)

(
ζn (ϑt+1)

ζn (ϑt)
gy,t+1

)1−ρ
) 1−γ

1−ρ






1−ρ
1−γ

. (OA.20)

The system of equations (OA.17), (OA.18), (OA.19) and (OA.20) completely characterizes the

optimal allocation, and it can be solved numerically using standard recursive techniques. Collin-

Dufresne, Johannes, and Lochstoer (2014) or Pohl, Schmedders, andWilms (2017) discuss numerical

algorithms for such problems when additional state variables are involved. Unfortunately, the

apparatus of the continuous-time methods that allows analytical characterization of survival based

on boundary behavior is not available here but Dindo (2015) is able to verify analytically at least

for specific special cases that the results extend to the discrete time setup. Pohl, Schmedders, and

Wilms (2017) confirm the presence of the same economic forces underlying survival of agents with

incorrect beliefs numerically in the context of a model with long run risks.

OA.9 Proof of Proposition 2.3

I prove the proposition through a sequence of lemmas. The proof builds on results from Fleming and

Soner (2006), Pham (2009) and Strulovici and Szydlowski (2014). The framework differs, however, along

important dimensions, in particular the endogenously determined discount rate and vanishing volatility at

the boundaries, so that it requires a separate treatment. In order to preserve transparency, I use Section OA.9

to outline the structure of the argument and postpone lengthier proofs into Section OA.10.

Section OA.9.1 (Lemmas OA.2 and OA.5) establishes elementary properties of the value function. In

Section OA.9.2, I formulate the corresponding Hamilton–Jacobi–Bellman equation. Proving the existence

and properties of the solution of this HJB equation is complicated by the fact that the volatility of the

Pareto share process θ vanishes at the boundaries of the interval θ ∈ [0, 1]. In Section OA.9.3, I therefore

formulate an auxiliary problem on the interval [ε, 1− ε]. Lemma OA.7 proves the existence, uniqueness and

differentiability of the solution to this problem. In Section OA.9.4 (Corollary OA.8), I extend the solution

to the interval [0, 1] through a limiting argument. Finally, in Section OA.9.5 (Lemma OA.10), I provide the

usual verification theorem.

OA.9.1 Properties of the value function

We start with definitions and some elementary properties of the value function.

Definition OA.1 The planner’s control a =
(
C1, C2, ν1, ν2

)
is admissible if C1 + C2 = Y and, for n ∈

{1, 2}, the Pareto weight processes λ̄n given by

d log λ̄nt = −

(
νnt +

1

2
(un)2

)
dt+ undWt

have a unique strong solution and

V n
t (Cn, νn)

.
= Et

[∫ ∞

t

λ̄ns
λ̄nt

|F (Cn
s , ν

n
s )| ds

]
< +∞.

The set of admissible controls is denoted A.
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The problem of an individual agent (6)–(7) is homogeneous degree one in the modified discount factors

and homogeneous degree 1 − γ in consumption. In the homogeneous economy, there exists a closed-form

solution for the continuation value V n
t (Y ) = Y 1−γ

t V̄ n, with V̄ n and the associated constant discount rate

ν̄n given in the proof of Lemma OA.2. In the heterogeneous economy, the planner’s value function satisfies

the following homogeneity property.

Lemma OA.2 The value function (8) satisfies J
(
λ̄t, Yt

)
=
(
λ̄1t + λ̄2t

)
Y 1−γ
t J̃ (θt) where J̃ (θt) is a bounded

function of the Pareto share θt = λ̄1t /
(
λ̄1t + λ̄2t

)
.

Proof. See Section OA.10.

Given ν
.
=
(
ν1, ν2

)
, the optimal choice of ζn in (8) only involves static optimization and yields

h0 (ν, θ)
.
= max

ζ1+ζ2=1
θF
(
ζ1, ν1

)
+ (1− θ)F

(
ζ2, ν2

)
= (OA.21)

=
β

1− γ





θ
(
1− γ − (1− ρ) ν1

β

ρ− γ

) γ−ρ
1−ρ




1

γ

+


(1− θ)

(
1− γ − (1− ρ) ν2

β

ρ− γ

) γ−ρ
1−ρ




1

γ




γ

.

Hence we can focus on admissible controls ν with ζ (ν) implied by (OA.21), and on planner’s indirect utility

flow h0 (ν, θ). The structure of the problem implies that the optimal Markov control of the planner is of the

form νnt = νn (θt), n ∈ {1, 2}. Throughout the proof, I impose the following restriction on the underlying

discount rate processes νn.

Assumption OA.3 The discount rates νnt = νn (θt), n ∈ {1, 2} are bounded functions of θ on [0, 1] that

are Lipschitz continuous, and there ∃ε > 0 such that

1− γ − (1− ρ) νnt /β

ρ− γ
> ε.

Later I verify that this assumption holds for the optimal discount rate process on every interval [ε, 1− ε].

I postpone the verification of this restriction at the boundaries as ε ց 0 to Appendix B in the main

text where I characterize the boundary behavior of the economy in more detail and explicitly calculate

the limit. The results in Appendix B show that the bounds imposed in Assumption OA.3 correspond to

the assumption that agents’ wealth-consumption ratios are bounded and bounded away from zero. The

subsequent characterization of the optimal control implies that the optimal policy necessarily satisfies these

assumptions.

Lemma OA.4 If a is admissible and satisfies Assumption OA.3, then

Et

[∫ ∞

t

λ̄ns
λ̄nt

(
Ys
Yt

)1−γ

ds

]
< +∞, n ∈ {1, 2} (OA.22)

and

lim
τ→∞

Et

[
λ̄nτ
λ̄nt

(
Yτ
Yt

)1−γ
]
= 0, n ∈ {1, 2} . (OA.23)

Proof. See Section OA.10.

The following lemma characterizes the limits of J̃ (θt) at the boundaries.

31



Lemma OA.5 The planner’s value function J
(
λ̄t, Yt

)
is continuously extended at the boundaries as λ̄1t ց 0

or λ̄2t ց 0 by the continuation values from the homogeneous agent economies. E.g., for λ̄2t > 0,

J
(
0, λ̄2t , Yt

) .
= lim

λ̄1

tց0
J
(
λ̄1t , λ̄

2
t , Yt

)
= λ̄2tV

2
t (Y ) . (OA.24)

Further, the optimal choice of consumption C1
u

(
λ̄1t , λ̄

2
t , Yt

)
for agent 1 and time u ≥ t satisfies

lim
λ̄1

tց0
C1

u

(
λ̄1t , λ̄

2
t , Yt

)
= 0 P -a.s. (OA.25)

The case λ̄2t ց 0 is symmetric.

Proof. See Section OA.10.

A vanishing Pareto weight on agent 1 thus leads to a vanishing consumption level (OA.25) for every given

time u ≥ t. However, convergence in (OA.25) is not uniform in u. Importantly, this argument therefore does

not prevent the possibility that for a given arbitrarily small Pareto weight, agent’s consumption recovers in

the future. A direct consequence of result (OA.24) is

lim
θց0

J̃ (θ) = V̄ 1 lim
θր1

J̃ (θ) = V̄ 2. (OA.26)

OA.9.2 The Hamilton–Jacobi–Bellman equation

Denoting λ̄ =
(
λ̄1, λ̄2

)′
and u =

(
u1, u2

)′
, the state vector is Z =

(
λ̄′, Y

)′
. This suggests that the planner’s

problem (8) leads to the Hamilton–Jacobi–Bellman equation for J
(
λ̄, Y

)
,

0 = sup
a∈A

2∑

n=1

λ̄n [F (Cn, νn)− Jλ̄nνn] + JyµyY +
1

2
tr (JzzΣ) , (OA.27)

where

Σ =

( (
diag

(
λ̄
)
u
) (

diag
(
λ̄
)
u
)′ (

diag
(
λ̄
)
u
)
σyY

σyY
(
diag

(
λ̄
)
u
)′

σ2
yY

2

)

and diag
(
λ̄
)
is a 2 × 2 diagonal matrix with elements of λ̄ on the main diagonal. Using the conjecture

J
(
λ̄, Y

)
=
(
λ̄1 + λ̄2

)
Y 1−γ J̃ (θ) reduces the problem to the ordinary differential equation for J̃ (θ) given by

(9) with boundary conditions J̃ (0) = V̄ 2 and J̃ (1) = V̄ 1, as determined by Lemma OA.5. Further define

h1 (ν, θ)
.
= −θν1 − (1− θ) ν2 +

(
θu1 + (1− θ)u2

)
(1− γ)σy + (1− γ)µy +

1

2
(1− γ)

2
σ2
y

h2 (ν, θ)
.
= θ (1− θ)

[
ν2 − ν1 +

(
u1 − u2

)
(1− γ)σy

]

h3 (θ)
.
=

1

2
θ2 (1− θ)

2 (
u1 − u2

)2

Together with h0 (ν, θ) from (OA.21), the HJB equation (9) can be written as

0 = sup
ν
h0 (ν, θ) + h1 (ν, θ) J̃ (θ) + h2 (ν, θ) J̃θ (θ) + h3 (θ) J̃θθ (θ)

with boundary conditions J̃ (0) = V̄ 2 and J̃ (1) = V̄ 1. Under Assumption OA.3, all functions hj are bounded

and Lipschitz.

The goal is to show that there exists a unique twice continuously differentiable solution of this equation
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that corresponds to the value function. Once the solution of the HJB equation is characterized, we prove

that it corresponds to the value function. In order to do that, the stochastic process for θt needs to be

well-defined. An application of Itô’s lemma to θt = λ̄1t /
(
λ̄1t + λ̄2t

)
yields

dθt = θt (1− θt)
[
ν2t − ν1t +

(
θtu

1 + (1− θt)u
2
) (
u2 − u1

)]
dt+ (OA.28)

+ θt (1− θt)
(
u1 − u2

)
dWt.

Lemma OA.6 Under Assumption OA.3, the stochastic differential equation (OA.28) has a unique strong

solution.

Proof. Under Assumption OA.3, the drift and volatility coefficients in (OA.28) are Lipschitz and bounded,

so that a unique strong solution exists (see, e.g., Pham (2009), Theorem 1.3.15).

OA.9.3 An auxiliary problem

Consider the following auxiliary planner’s problem with suboptimal control. Fix ε ∈
(
0, 12
)
. When θt =

λ̄1t /
(
λ̄1t + λ̄2t

)
∈ (ε, 1− ε), the planner exercises local control optimally, given her value function. When θt

hits the boundary ε (a symmetric argument holds for 1−ε), the planner is restricted to fix consumption shares

of the two agents to ζ̄n (ε) that are the optimal static consumption shares from the proof of Lemma OA.2

and keep them fixed forever. Formally, the auxiliary problem for a fixed ε and θt ∈ [ε, 1− ε] is given by

Jε
(
λ̄t, Yt

)
= sup

a∈A

Et

[
2∑

n=1

∫ τε

t

λ̄nsF (Cn
s , ν

n
s ) ds+ Jε

(
λ̄τε , Yτε

)
]

(OA.29)

where τε is a stopping time given by τε = inf {s ≥ t : θs /∈ (ε, 1− ε)} and the continuation value at the

stopping time is established in Lemma OA.2 as Jε
(
λ̄τε , Yτε

)
=
(
λ̄1τε + λ̄2τε

)
Y 1−γ
τε J̄ (θτε) with θτε ∈ {ε, 1− ε}.

The value function of the auxiliary problem also satisfies the homotheticity property and

Jε
(
λ̄t, Yt

)
=
(
λ̄1t + λ̄2t

)
Y 1−γ
t J̃ε (θt) , θt ∈ (ε, 1− ε)

where J̃ε (θt) is analogous to J̃ (θt) from Lemma OA.2. The solution can be continuously extended for

θ ∈ [0, 1] \ [ε, 1− ε] using J̃ε (θ) = J̄ (θ).

Lemma OA.7 The Hamilton–Jacobi–Bellman equation for the auxiliary problem

0 = sup
ν
h0 (ν, θ) + h1 (ν, θ) J̃ε (θ) + h2 (ν, θ) J̃ε

θ (θ) + h3 (θ) J̃ε
θθ (θ) (OA.30)

with boundary conditions J̃ε (ε) = J̄ (ε) and J̃ε (1− ε) = J̄ (1− ε) has a unique twice continuously differen-

tiable solution on [ε, 1− ε].

Proof. See Section OA.10.

OA.9.4 Solution to the Hamilton–Jacobi–Bellman equation

We want co characterize the limiting solution of a sequence of the auxiliary problems for
{
εk
}∞
k=1

as εk ց 0.

First notice that the boundary condition J̄
(
εk
)
converges to V̄ 2 (and J̄

(
1− εk

)
to V̄ 1) as εk ց 0, i.e., to

the limiting points of the value function given by (OA.26). We want to establish convergence of the sequence

J̃εk (θ) to J̃ (θ) on every interval [ε, 1− ε], ε > 0.
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The difficulty is the vanishing coefficient h3 (θ) as θ approaches 0 or 1. While the coefficients kj (ν, θ)

are bounded for every fixed
[
εk, 1− εk

]
, they are not uniformly bounded across all such intervals as εk ց 0.

However, there is a suitable transformation of variables. Define ϑ (θ) = log (θ/ (1− θ)) ∈ (−∞,+∞) as in

(10) and Ĵ (ϑ (θ))
.
= J̃ (θ). The HJB equation (9) can be written as a differential equation for Ĵ (ϑ) given by

0 = sup
ν
ĥ0 (ν, ϑ) + ĥ1 (ν, ϑ) Ĵ (ϑ) + ĥ2 (ν, ϑ) Ĵϑ (ϑ) + ĥ3 (ϑ) Ĵϑϑ (ϑ) (OA.31)

with θ (ϑ) = exp (ϑ) / (1 + exp (ϑ)) and

ĥ0 (ν, ϑ)
.
= h0 (ν, θ (ϑ))

ĥ1 (ν, ϑ)
.
= −θ (ϑ) ν1 − (1− θ (ϑ)) ν2 +

(
θ (ϑ)u1 + (1− θ (ϑ))u2

)
(1− γ)σy + (1− γ)µy +

1

2
(1− γ)2 σ2

y

ĥ2 (ν, ϑ)
.
= ν2 − ν1 +

(
u1 − u2

)
(1− γ)σy +

1

2

(
u1 − u2

)2
(2θ (ϑ)− 1)

ĥ3 (ϑ)
.
=

1

2

(
u1 − u2

)2
.

The boundary conditions for the problem are given by limϑ→−∞ Ĵ (ϑ) = V̄ 2 and limϑ→+∞ Ĵ (ϑ) = V̄ 1. Under

Assumption OA.3, the coefficients k̂j (ν, ϑ) = kj (ν, ϑ) /k3 (ϑ) for j = 0, 1, 2 are bounded for ϑ ∈ (−∞,∞).

The HJB equation (OA.31) thus satisfies conditions of the proof in Strulovici and Szydlowski (2014),

Appendix B.3, that extends the solution of the HJB equation on a sequence of bounded domains to an

unbounded limit. Rather than repeating the proof here, I note that the structure of (OA.31), in particular the

bounded coefficients k̂j , implies that Lemma 8 in Strulovici and Szydlowski (2014) is satisfied, for instance,

with the function φ (z) = Kz for K sufficiently large, and that the functions Ĵ , Ĵϑ, Ĵϑϑ are bounded.

An application of the Arzelà–Ascoli theorem implies that there is a uniformly convergent subsequence of

solutions Ĵεκ on the interval [ε, 1− ε] for every ε > 0.

Strulovici and Szydlowski (2014) then use the following diagonalization argument. Start with interval[
ε1, 1− ε1

]
. Find the uniformly convergent subsequence of Ĵεk (ϑ) on

[
ε1, 1− ε1

]
and denote its limit w1 (ϑ).

Now take interval
[
ε2, 1− ε2

]
and find a subsequence of the first subsequence that converges on

[
ε2, 1− ε2

]
.

Denote the solution w2 (ϑ) and notice that w1 (ϑ) = w2 (ϑ) for ϑ ∈
[
ε1, 1− ε1

]
. Continue iteratively and

define the limiting solution as follows: for ϑ ∈
[
εk, 1− εk

]
\
[
εk−1, 1− εk−1

]
, set Ĵ (ϑ)

.
= wk (ϑ).

Corollary OA.8 The limiting solution J̃ (θ) = Ĵ (ϑ (θ)) constructed in this way exists, is twice continuously

differentiable and uniquely solves the Hamilton–Jacobi–Bellman equation (9).

The following lemma is useful as a clarification for the intuition for why the solution of the HJB equation

(9) can be defined through the limit of solutions on closed subintervals.

Lemma OA.9 Let
{
εk
}∞
k=1

satisfy εk ց 0. Under Assumption OA.3, the sequence of stopping times{
τε

k
}∞

k=1
in the auxiliary problem (OA.29) is almost surely diverging, P

(
τε

k k→∞
−→ +∞

)
= 1.

Proof. I again use the transformation ϑ (θ) = log (θ/ (1− θ)). In the state space represented by ϑ, the

sequence of stopping times
{
τk
}∞
k=1

corresponds to a sequence of first crossing times of thresholds ±ϑ̄k as

ϑ̄k ր +∞. Since ϑ (θ) follows (10), it is an Itô process with bounded coefficients, for which the claim of the

lemma is a standard result.

As we move the boundary εk in the auxiliary problem closer to zero, the crossing time of this boundary

diverges to infinity. With discounting (under Assumption A.1) and under a uniform bound on the boundary

values, their contribution to the value function for a given initial value θ0 vanishes as εk ց 0.
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While boundedness and the Lipschitz property stated in Assumption OA.3 hold for νn (θ) for every given

auxiliary problem (for every fixed εk), they may not hold in the limit as εk ց 0. I prove that Assumption

OA.3 holds also in the limit in Appendix B of the main text, by obtaining closed form solutions for these

limits.

OA.9.5 Verification theorem

The last step is to verify that the solution of the Hamilton–Jacobi–Bellman equation yields the value function.

This is a standard verification argument.

Lemma OA.10 The function J
(
λ̄t, Yt

)
=
(
λ̄1t + λ̄2t

)
Y 1−γ
t J̃ (θt) , where J̃ (θ) is the solution of the Hamilton–

Jacobi–Bellman equation (9), coincides with the value function (8).

Proof. See Section OA.10.

OA.10 Proofs for Section OA.9

Proof of Lemma OA.2. Equation (8) can be written as

J
(
λ̄t, Yt

)
=
(
λ̄1t + λ̄2t

)
Y 1−γ
t sup

a∈A

Et

[
θt

∫ ∞

t

λ̄1s
λ̄1t

(
Ys
Yt

)1−γ

F
(
ζ1s , ν

1
s

)
ds

+(1− θt)

∫ ∞

t

λ̄2s
λ̄2t

(
Ys
Yt

)1−γ

F
(
ζ2s , ν

2
s

)
ds

]

=̇
(
λ̄1t + λ̄2t

)
Y 1−γ
t J̃ (θt)

because the ratios λ̄ns /λ̄
n
t and Ys/Yt do not depend on λ̄nt and Yt. Here, a =

(
ζ1, ζ2, ν1, ν2

)
∈ A is a set of

controls equivalent to Definition OA.1 because Cn = ζnY . Further, since the individual value functions are

increasing in consumption, we have

J
(
λ̄t, Yt

)
= sup

C1+C2=Y

λ̄1tV
1
t

(
C1
)
+ λ̄2tV

2
t

(
C2
)
≤ λ̄1tV

1
t (Y ) + λ̄2tV

2
t (Y ) .

The value functions V n
t (Y ) have a closed form solution for the iid growth process Y , given by V n

t (Y ) =

Y 1−γ
t V̄ n where

V̄ n =
1

1− γ

(
β−1

[
β − (1− ρ)

(
µy + unσy +

1

2
(1− γ)σ2

y

)])− 1−γ
1−ρ

(OA.32)

with the associated optimal discount rate

ν̄n =
β

1− ρ

(
1− γ + (γ − ρ)

(
(1− γ) V̄ n

)− 1−ρ
1−γ

)
= β + (ρ− γ)

(
µy + unσy +

1

2
(1− γ)σ2

y

)
. (OA.33)

V n
t (Y ) and ν̄n are the value function and discount rate from a homogeneous economy populated only by

agent n. These objects are well-defined when the first restriction in Assumption A.1 holds and satisfy the

same homogeneity properties as the planner’s value function. Therefore, J̃ (θ) ≤ θV̄ 1 + (1− θ) V̄ 2.

Finally, consider a suboptimal policy consisting of fixing, given an initial θt, the consumption shares ζ̄n

for the two agents for the whole future. Since individual consumption processes now exhibit iid growth, the
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optimal choice of the discount rate will satisfy νnt = ν̄n. We obtain

J
(
λ̄t, Yt

)
≥ sup

ζ̄1+ζ̄2=1

[
λ̄1tV

1
t

(
ζ̄1Yt

)
+ λ̄2tV

2
t

(
ζ̄2Yt

)]
=

=
(
λ̄1t + λ̄2t

)
Y 1−γ
t sup

ζ̄1+ζ̄2=1

[
θt
(
ζ̄1
)1−γ

V̄ 1 + (1− θt)
(
ζ̄2
)1−γ

V̄ 2
]

and thus

J̃ (θ) ≥ sup
ζ̄1+ζ̄2=1

θ
(
ζ̄1
)1−γ

V̄ 1 + (1− θ)
(
ζ̄2
)1−γ

V̄ 2.

The first-order condition with respect to ζ̄1 yields

ζ̄1 (θ) =

[
θ (1− γ) V̄ 1

] 1

γ

[
θ (1− γ) V̄ 1

] 1

γ +
[
(1− θ) (1− γ) V̄ 2

] 1

γ

(OA.34)

and ζ̄2 (θ) = 1− ζ̄1 (θ). Substituting this result back, we have

J
(
λ̄t, Yt

)
≥
(
λ̄1t + λ̄2t

)
Y 1−γ
t

1

1− γ

[[
θt (1− γ) V̄ 1

] 1

γ +
[
(1− θt) (1− γ) V̄ 2

] 1

γ

]γ
(OA.35)

=
(
λ̄1t + λ̄2t

)
Y 1−γ
t J̄ (θt) .

which establishes the lower bound on J̃ (θt).

Proof of Lemma OA.4. Introspection of the function h0 (ν, θ) in (OA.21) reveals that under Assump-

tion OA.3, this function is bounded away from zero, and thus there exists M > 0 such that
∣∣h0 (ν, θ)

∣∣ > M .

We have

J
(
λ̄t, Yt

)
= sup

a∈A

Et

[∫ ∞

t

[
λ̄1sF

(
C1

s , ν
1
s

)
+ λ̄2sF

(
C2

s , ν
2
s

)]
ds

]
=

= Y 1−γ
t sup

(ν1,ν2)

Et

[∫ ∞

t

(
λ̄1s + λ̄2s

)(Ys
Yt

)1−γ

h0 (νs, θs) ds

]
.

Consider an arbitrary pair of processes
(
ν1, ν2

)
and the associated optimal consumption shares ζn such that

a =
(
ζ1, ζ2, ν1, ν2

)
is admissible. Then

+∞ > Et

[∫ ∞

t

[
λ̄1s
∣∣F
(
C1

s , ν
1
s

)∣∣+ λ̄2s
∣∣F
(
C2

s , ν
2
s

)∣∣] ds
]
≥

≥ Y 1−γ
t Et

[∫ ∞

t

(
λ̄1s + λ̄2s

)(Ys
Yt

)1−γ ∣∣h0 (νs, θs)
∣∣ ds
]
≥MY 1−γ

t Et

[∫ ∞

t

(
λ̄1s + λ̄2s

)(Ys
Yt

)1−γ

ds

]

which proves (OA.22). The limit in (OA.23) is a direct consequence.

Proof of Lemma OA.5. Consider the case λ̄1t ց 0. Given optimal consumption streams Cn
(
λ̄1t , λ̄

2
t , Yt

)
,

we have

J
(
λ̄1t , λ̄

2
t , Yt

)
= λ̄1tV

1
t

(
C1
(
λ̄1t , λ̄

2
t , Yt

))
+ λ̄2tV

2
t

(
C2
(
λ̄1t , λ̄

2
t , Yt

))
. (OA.36)

Since V 1
t

(
C1
(
λ̄1t , λ̄

2
t , Yt

))
is bounded from above as a function of λ̄t by V

1
t (Y ), it follows that

lim
λ̄1

tց0
λ̄1tV

1
t

(
C1
(
λ̄1t , λ̄

2
t , Yt

))
= V 1 ≤ 0
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and thus

J
(
λ̄1t , λ̄

2
t , Yt

)
≤ lim

λ̄1

tց0
λ̄2tV

2
t

(
C2
(
λ̄1t , λ̄

2
t , Yt

))
≤ λ̄2tV

2
t (Y ) .

Conversely, assume suboptimal policies ζnu = ζ̄n (θt) for u ≥ t where ζ̄n (θt) are given by (OA.34). Taking

the limit in (OA.35) and noticing that λ̄1t ց 0 for a given λ̄2t > 0 implies θt ց 0 yields

lim
λ̄1

tց0
J
(
λ̄1t , λ̄

2
t , Yt

)
≥ λ̄2tY

1−γ
t V̄ 2 = λ̄2tV

2
t (Y ) .

Combining the two inequalities yields (OA.24). The limit in (OA.25) is a direct consequence.

Remark OA.1 The maximization over
(
ν1, ν2

)
in the HJB equation (OA.27) can be solved separately.

Under the optimal discount rate process νn for agent n,

f (Cn, Jλ̄n)
.
= sup

νn
F (Cn, νn)− Jλ̄nνn =

β

1− ρ

[
(Cn)

1−ρ
((1− γ)Jλ̄n)

ρ−γ
1−γ − (1− γ)Jλ̄n

]
.

The function f is the aggregator in the stochastic differential utility representation of recursive preferences

postulated by Duffie and Epstein (1992b). Section OA.2 gives more detail on this relationship. Optimal

consumption shares ζn are given by the first-order conditions in the consumption allocation

ζ1 =

(
λ̄1
) 1

ρ ((1− γ)Jλ̄1)
1−γ/ρ
1−γ

∑2
k=1

(
λ̄k
) 1

ρ ((1− γ)Jλ̄k)
1−γ/ρ
1−γ

(OA.37)

=
θ

1

ρ

(
(1− γ) J̃1 (θ)

) 1−γ/ρ
1−γ

θ
1

ρ

(
(1− γ) J̃1 (θ)

) 1−γ/ρ
1−γ

+ (1− θ)
1

ρ

(
(1− γ) J̃2 (θ)

) 1−γ/ρ
1−γ

,

and ζ2 = 1 − ζ1, where Jλ̄n = Y 1−γ J̃n (θ) are the individual agents’ continuation values under the optimal

consumption allocation, with J̃n (θ) defined as

J̃1 (θ) = J̃ (θ) + (1− θ) J̃θ (θ) (OA.38)

J̃2 (θ) = J̃ (θ)− θJ̃θ (θ) .

These are obtained from the envelope condition on the planner’s value function (8).

Proof of Lemma OA.7. The proof is a modification of the shooting algorithm argument from Strulovici

and Szydlowski (2014). We first show the claim of the lemma for a fixed control ν (θ) =
(
ν1 (θ) , ν2 (θ)

)

that satisfies Assumption OA.3. Then we extend the argument to the optimal control in the boundary value

problem (OA.30).

Consider an initial value problem (for a given ν (θ)) given by differential equation (OA.30) together with

initial conditions J̃ε (ε) = J̄ (ε) and J̃ε
θ (ε) = y. Since the functions hj (ν (θ) , θ) are bounded and satisfy

Lipschitz continuity, it is well known (see, e.g., the references in Strulovici and Szydlowski (2014), Appendix

B) that the initial value problem has a unique, twice continuously differentiable solution that is uniformly

continuous in y. The goal is to show that we can find a unique value of y such that J̃ε (1− ε) = J̄ (1− ε),

so that the boundary value problem has a unique solution.

Define K (θ) = J̃ε
θ (θ) and k

j (θ) = −hj (ν (θ) , θ) /h3 (θ) for j = 0, 1, 2. Then (OA.30) can be integrated
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to

K (s) = y +

∫ s

ε

[
k0 (r) + k1 (r) J̃ε (r) + k2 (r)K (r)

]
dr

J̃ε (θ) = J̄ (ε) +

∫ θ

ε

K (s) ds. (OA.39)

We are interested in the sensitivity of J̃ε (1− ε) to changes in the initial condition J̃ε
θ (ε) = y. We have

d

dy
K (s) = 1 +

∫ s

ε

[
k1 (r)

d

dy
J̃ε (r) + k2 (r)

d

dy
K (r)

]
dr =

= 1 +

∫ s

ε

[
k1 (r)

∫ r

ε

d

dy
K (p)dp+ k2 (r)

d

dy
K (r)

]
dr

= 1 +

∫ s

ε

[(∫ s

r

k1 (r′) dr′ + k2 (r)

)
d

dy
K (r)

]
dr

This is an integral form of a differential equation for d
dyK (s) in s with d

dyK (0) = 1. Given the term∫ s

r k
1 (r′) dr′ + k2 (r) is bounded, take an M > 0 such that

∣∣∣∣
∫ s

r

k1 (r′) dr′ + k2 (r)

∣∣∣∣ < M .

Then

e−M(s−ε) ≤
d

dy
K (s) ≤ eM(s−ε)

and therefore, using (OA.39),

1

M

[
1− e−M(1−2ε)

]
≤

d

dy
J̃ε (1− ε) ≡

∫ 1−ε

ε

d

dy
K (s) ds ≤

1

M

[
eM(1−2ε) − 1

]
.

The sensitivity of the terminal value J̃ε (1− ε) with respect to changes in the initial condition is therefore

always positive, bounded and bounded away from zero. Moreover, the existence of the continuously differ-

entiable solution for the initial value problem extends beyond θ = 1−ε. Therefore, for an arbitrary choice of

the initial slope y, the terminal value J̃ε (1− ε) is finite. The lower bound on d
dy J̃

ε (1− ε) then implies that

we can always sufficiently vary y to reach an arbitrary terminal value J̃ε (1− ε). The fact that d
dy J̃

ε (1− ε)

is always positive implies that the choice of y such that the terminal value yields the boundary condition

J̃ε (1− ε) = J̄ (1− ε) of the boundary value problem (OA.30) is unique.

The extension of the proof to the optimal control ν (θ) is a consequence of Berge’s Maximum Theorem.

The unique maximizers are given by

νn (θ) =
β

1− ρ


1− γ + (γ − ρ)

(
ζn (θ)

1−γ

(1− γ) J̃n (θ)

) 1−ρ
1−γ


 (OA.40)

with J̃n (θ) defined as in (OA.38) except for J̃ε (θ) in place of J̃ (θ). These functions satisfy Assumption OA.3

on every interval [ε, 1− ε], ε ∈
(
0, 12

)
. The limits of these formulas at the boundaries as εց 0 are computed

in the proof of Proposition OA.1 in Appendix B. This concludes the proof.
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Proof of Lemma OA.10. Consider time τ ≥ t. Then

J
(
λ̄τ , Yτ

)
= J

(
λ̄t, Yt

)
+

∫ τ

t

µJ,sds+

∫ τ

t

σJ,sdWs

where

µJ,s =
(
λ̄1s + λ̄2s

)
Y 1−γ
s

{
h1 (νs, θs) J̃ (θs) + h2 (νs, θs) J̃θ (θs) + h3 (θs) J̃θθ (θs)

}

σJ,s =
(
λ̄1s + λ̄2s

)
Y 1−γ
s

{[
θsu

1 + (1− θs)u
2 + (1− γ)σy

]
J̃ (θs) + θs (1− θs)

(
u1 − u2

)
J̃θ (θs)

}
.

It follows from the discussion in Section OA.9.4 that the terms J̃ (θ) and θ (1− θ) J̃θ (θ) = Ĵϑ (ϑ (θ)) are

bounded, and thus σJ,s is square integrable over [t, τ ]. As a consequence, the stochastic integral
∫ τ

t
σJ,sdWs

is a martingale as a function of τ , and we have

Et

[
J
(
λ̄τ , Yτ

)]
= J

(
λ̄t, Yt

)
+ Et

[∫ τ

t

µJ,sds

]
.

The limiting version of the HJB equation (OA.30) for εց 0 implies that for an arbitrary admissible control(
ζ1, ζ2, ν1, ν2

)
with optimal choice of the consumption shares ζn = ζn (ν) conditional on ν,

Et

[
J
(
λ̄τ , Yτ

)]
≤ J

(
λ̄t, Yt

)
− Et

[∫ τ

t

(
λ̄1s + λ̄2s

)
Y 1−γ
s h0 (νs, θs) ds

]

with equality for the optimal control ν =
(
ν1, ν2

)
given in (OA.40). Reorganizing and taking the limit

τ → ∞, we obtain

Et

[∫ ∞

t

(
λ̄1s + λ̄2s

)
Y 1−γ
s h0 (νs, θs) ds

]
≤ J

(
λ̄t, Yt

)
(OA.41)

where we utilized Lemma OA.4 to show that

lim
τ→∞

Et

[
J
(
λ̄τ , Yτ

)]
= lim

τ→∞
Et

[(
λ̄1τ + λ̄2τ

)
Y 1−γ
τ J̃ (θτ )

]
= 0

because J̃ (θ) is a bounded function. The left-hand side of (OA.41) evaluated for the maximizers (OA.40)

is the value function, and since these maximizers are admissible, the inequality holds with equality for the

value function.

OA.11 Proofs omitted from Appendix B of the main text

Optimal choice of νn in (9) implies that

sup
ν∈R

F (C, ν)− νV
.
= f (C, V ) =

β

1− ρ

[
C1−ρ ((1− γ)V )

ρ−γ
1−γ − (1− γ)V

]
.
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Substituting this expression into (9) for F
(
ζ, J̃1

)
and F

(
1− ζ, J̃2

)
leads to the ODE

0 = θ
β

1− ρ

(
ζ1
)1−ρ

(
(1− γ) J̃1 (θ)

) ρ−γ
1−γ

+ (1− θ)
β

1− ρ

(
ζ2
)1−ρ

(
(1− γ) J̃2 (θ)

) ρ−γ
1−γ

+ (OA.42)

+ (1− γ)

[
−

β

1− ρ
+
(
θu1 + (1− θ)u2

)
σy + µy +

1

2
(1− γ)σ2

y

]
J̃ (θ)

+ θ (1− θ)
(
u1 − u2

)
(1− γ)σy J̃θ (θ) +

1

2
θ2 (1− θ)

2 (
u1 − u2

)2
J̃θθ (θ)

where ζn are given by (OA.37). Section OA.9 in this Online Appendix proves the existence of a twice-

continuously differentiable solution to this equation. The results that follow also utilize the third derivative

of J̃ , which can be obtained by differentiating (OA.42).

Before proceeding with the proof of Proposition 5.1, we prove two lemmas that characterize the boundary

behavior of J̃ (θ) and consumption shares of the two agents.

Lemma OA.1 The solution of the planner’s problem satisfies

lim
θց0

θJ̃θ (θ) = lim
θց0

(θ)
2
J̃θθ (θ) = lim

θց0
(θ)

3
J̃θθθ (θ) = 0.

Proof. Lemma OA.5 implies that the planner’s objective function can be continuously extended at θ =

0 by the continuation value for agent 2 from a homogeneous economy. Expression (OA.36) scaled by(
α1 + α2

)
(1− γ)

−1
Y 1−γ leads to an equation in scaled continuation values

J̃ (θ) = θJ̃1 (θ) + (1− θ) J̃2 (θ)

and the proof of Lemma OA.5 yields

lim
θց0

J̃(θ) = lim
θց0

J̃2(θ) = V̄ 2,

where V̄ 2 is defined in (OA.32). Since J̃2 (θ) = J̃ (θ)− θJ̃θ (θ), then

lim
θց0

θJ̃θ (θ) = 0. (OA.43)

Further, consider the behavior of individual terms in ODE (OA.42) as θ ց 0. Using expression (OA.37),

the first term is proportional to

θ (ζ (θ))
1−ρ

(
J̃1 (θ)

) ρ−γ
1−γ

= (θ)
1

ρ

(
J̃1 (θ)

) 1−γ/ρ
1−γ

[K (θ)]
ρ−1

=

= ζ (θ) [K (θ)]
ρ
,

where K (θ) is the denominator in the formula for the consumption share (OA.37), and limθց0K (θ) =
(
V̄ 2
) 1−γ/ρ

1−γ <∞. Since limθց0 ζ (θ) = 0, the first term in (OA.42) vanishes as θ ց 0. The sum of the second

and third term converges to

β

1− ρ

(
V̄ 2
) ρ−γ

1−γ +

(
−

β

1− ρ
+ µy + u2σy −

1

2
γσ2

y

)
V̄ 2

and formula (OA.32) implies that this expression is zero. Since the fourth term in (OA.42) also converges
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to zero due to (OA.43), the last term in (OA.42) must also converge to zero, or

lim
θց0

(θ)
2
J̃θθ (θ) = 0. (OA.44)

Finally, differentiate the PDE (OA.42) with respect to θ and multiply the equation by θ. Using comparisons

with results (OA.43)–(OA.44), the assumption that functions ζn (θ) /
(
(1− γ) J̃n (θ)

)1/(1−γ)

are bounded

and bounded away from zero and limθց0 ζ
1 (θ) = 0, we determine that all terms in the differentiated equation

containing derivatives of J̃ (θ) up to second order vanish as θ ց 0. The single remaining term that contains

a third derivative of J̃ (θ) is multiplied by (θ)3 and must necessarily converge to zero as well, and thus

lim
θց0

(θ)3 J̃θθθ (θ) = 0.

The Markov structure of the problem implies that the evolution of the continuation values and consump-

tion shares can be written as

dJ̃n (θt)

J̃n (θt)

.
= µJ̃n (θt) dt+ σJ̃n (θt) dWt (OA.45)

dζn (θt)

ζn (θt)

.
= µζn (θt) dt+ σζn (θt) dWt, (OA.46)

where the drift and volatility coefficients are functions of θ. The following lemma characterizes the boundary

behavior of these coefficients for agent 2 as θ ց 0.

Lemma OA.2 The coefficients in equations (OA.45)–(OA.46) for agent 2 satisfy

lim
θց0

µJ̃2 (θ) = lim
θց0

σJ̃2 (θ) = lim
θ1ց0

µζ2 (θ) = lim
θց0

σζ2 (θ) = 0.

Proof. The result follows from an application of Itô’s lemma to J̃2 and ζ2. Utilizing formulas (OA.37) and

(OA.38), the coefficients contain expressions for the value function J̃ (θ) and its partial derivatives up to the

third order, and all expressions can be shown to converge to zero using Lemma OA.1. Itô’s lemma implies

dJ̃2 (θt) = d
[
J̃ (θt)− θtJ̃θ (θt)

]
=

= − (θt)
2
J̃θθ (θt)

dθt
θt

−
1

2

[
(θt)

2
J̃θθ (θt) + (θt)

3
J̃θθθ (θt)

](dθt
θt

)2

.

Equation (25) implies that the drift and volatility coefficients of dθt/θt are bounded by Assumption OA.3.

Applying results from Lemma OA.1 then proves the claim about the drift and volatility coefficients of J̃2 (θ)

(J̃2 itself converges to a nonzero limit so the scaling is innocuous). Further notice that

dJ̃1 (θt) = d
[
J̃ (θt) + (1− θt) J̃θ (θt)

]
= − (θt)

2
J̃θθ (θt)

dθt
θt

+ (OA.47)

+
1

2

[
(θt)

2
J̃θθ (θt) + (1− θt) (θt)

2
J̃θθθ (θt)

](dθt
θt

)2

and that
ζ1 (θ)

(
(1− γ) J̃1 (θ)

) 1

1−γ

= (θ)
1

ρ

(
J̃1 (θ)

)−γ/ρ
1−γ

K (θ)
−1

(OA.48)
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is bounded and bounded away from zero by assumption. Denote the numerators of ζn in (OA.37) as

Z1 (θ) = θ
1

ρ

(
(1− γ) J̃1 (θ)

) 1−γ/ρ
1−γ

Z2 (θ) = (1− θ)
1

ρ

(
(1− γ) J̃2 (θ)

) 1−γ/ρ
1−γ

.

Then ζ2 = Z2/
(
Z1 + Z2

)
and, omitting arguments,

dZ1 =
1

ρ
Z1dθ

θ
+

ρ− γ

ρ (1− γ)
Z1 dJ̃

1

J̃1
+

1

2

1− ρ

ρ2
Z1

(
dθ

θ

)2

+

+
1

2

γ (1− ρ) (γ − ρ)

ρ2 (1− γ)2
Z1

(
dJ̃1

J̃1

)2

+
ρ− γ

ρ2 (1− γ)
Z1 dθ

θ

dJ̃1

J̃1

dZ2 = −
1

ρ
Z2 θ

1− θ

dθ

θ
+

ρ− γ

ρ (1− γ)
Z2 dJ̃

2

J̃2
+

1

2

1− ρ

ρ2
Z2

(
θ

1− θ

)2(
dθ

θ

)2

+

+
1

2

γ (1− ρ) (γ − ρ)

ρ2 (1− γ)
2 Z2

(
dJ̃2

J̃2

)2

−
ρ− γ

ρ2 (1− γ)
Z2 θ

1− θ

dθ

θ

dJ̃2

J̃2
.

Since the drift and volatility coefficients of dJ̃2/J̃2 vanish as θ ց 0, and limθց0 Z
2 (θ) =

(
(1− γ) V̄ 2

) 1−γ/ρ
1−γ ,

the drift and volatility coefficients in the equation for dZ2 vanish. In the equation for dZ1, it remains to

determine the behavior of terms containing dJ̃1 (the remaining contributions to drift and volatility terms

converge to zero due to limθց0Z
1 (θ) = 0):

Z1

J̃1
= θ

[
(θ)

1

ρ

(
(1− γ) J̃1

)−γ/ρ
1−γ

]1−ρ

,

where the term in brackets is bounded and bounded away from zero by utilizing (OA.48). Using the first θ

to multiply the coefficients in dJ̃1 in formula (OA.47), we conclude that the coefficients in Z1dJ̃1/J̃1 vanish

as θ ց 0. Finally, the drift term arising from
(
dJ̃1

)2
vanishes, and

Z1

(
dJ̃1

J̃1

)2

=
(θ)

5
(
J̃θθ

)2

J̃ + (1− θ) J̃θ

[
(θ)

1

ρ

(
(1− γ) J̃1

)−γ/ρ
1−γ

]1−ρ (
dθ

θ

)2

.

Here, the last term has a bounded drift, the second last term is bounded, and the first term converges to zero

as θ ց 0, which can be shown using l’Hospital’s rule (the numerator converges to zero and the denominator

to zero or −∞, depending on the sign of 1− γ):

lim
θց0

(θ)
5
(
J̃θθ

)2

J̃ + (1− θ) J̃θ
= lim

θց0

5 (θ)
4
J̃θθ + 2 (θ)

5
J̃θθθ

1− θ
= 0.

Thus all terms in the drift and volatility coefficients of dZ1 vanish. Applying Itô’s lemma to ζ2 yields

dζ2 =
1

Z1 + Z2
dZ2 −

Z2

(Z1 + Z2)
2

(
dZ1 + dZ2

)
+

+
Z2

(Z1 + Z2)3
(
dZ1 + dZ2

)2
−

1

(Z1 + Z2)2
dZ2

(
dZ1 + dZ2

)

and the results on the behavior of dZ1 and dZ2 as θ ց 0 lead to the desired conclusion about the convergence
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of drift and volatility coefficients of dζ2.

Proof of Proposition 5.1. I start by assuming that ξn (θ) in (23) are functions that are bounded and

bounded away from zero. This implies that the discount rate functions νn (θ) are bounded and that the

drift and volatility coefficients in the stochastic differential equation for θ, (25), are bounded as well. The

assumption will ultimately be verified by a direct calculation of the limits of ξn (θ) as θ → {0, 1}. Without

loss of generality, it is sufficient to focus on the case θ ց 0.

Lemmas OA.1 and OA.2 characterize the convergence as θ ց 0 of the local behavior of the stochastic

discount factor S2
t (θ) in (22) to S2

t (0), which is the limiting stochastic discount factor corresponding to the

one prevailing in a homogeneous economy populated only by agent 2. Convergence of the risk-free interest

rate follows from the direct calculation of

r (0) = lim
tց0

−
1

t
logE

[
M2

t S
2
t (0) | F0

]
.

Similarly, convergence of the aggregate wealth-consumption ratio follows from

ξ (θ) = ξ1 (θ) ζ1 (θ) + ξ2 (θ) ζ2 (θ) .

Since ξn (θ) are bounded and ζ1 (θ) converges to zero, we have

lim
θց0

ξ (θ) = lim
θց0

ξ2 (θ) =
1

β

(
(1− γ) V̄ 2

)1−ρ
,

where V̄ 2 is given in Lemma OA.2. In order to show convergence of the infinitesimal return, observe that

ξ1 (θ) ζ1 (θ) = β−1θ
(
(1− γ) J̃1 (θ)

) [
Z1 (θ) + Z2 (θ)

]−ρ

and

d
[
θ (1− γ) J̃1 (θ)

]
= θ (1− γ)

[
J̃1 (θ)

dθ

θ
+ dJ̃1 (θ) + dJ̃1 (θ)

dθ

θ

]
.

The drift and volatility coefficients of the first term on the right-hand side vanish as θ ց 0 by the proof of

Lemma OA.1, and the coefficients of the other two terms vanish by combining the results from the proofs of

Lemma OA.1 and Lemma OA.2. Further,

d
{[
Z1 + Z2

]−ρ
}
= −ρ

[
Z1
(
θ1
)
+ Z2

(
θ1
)]−ρ−1 (

dZ1 + dZ2
)
+

+
1

2
ρ (ρ+ 1)

[
Z1
(
θ1
)
+ Z2

(
θ1
)]−ρ−2 (

dZ1 + dZ2
)2

and since dZ1 and dZ2 have vanishing coefficients by the proof of Lemma OA.2 and the remaining terms are

bounded, we obtain that d
[
ξ1 (θ) ζ1 (θ)

]
has vanishing drift and volatility coefficients as θ ց 0. The same

argument holds for d
[
ξ2 (θ) ζ2 (θ)

]
, and thus dξ (θ) has vanishing coefficients as well. Therefore all but the

first term in

dAt = d [ξ (θt)Yt] = At
dYt
Yt

+ Ytdξ (θt) + dξ (θt) dYt

have coefficients that decline to zero as θt ց 0, which proves the result.

Before we proceed with the proof of Proposition 5.3, we show a limiting result for the continuation value

of the ‘small’ agent in the neighborhood of the boundary θ ց 0. Homogeneity of the problem (26)–(27)

motivates the guess

V 1
t =

(
A1

t

)1−γ
V̂ 1 (θt) . (OA.49)
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While a closed-form solution for V̂ 1 (θ) is not available, it is again possible to characterize the asymptotic

behavior as θ ց 0. The next result will be useful and is stated without proof.

Lemma OA.3 Let f : R → R be differentiable with a monotone first derivative in a neighborhood of −∞

and have a finite limit limx→−∞ f(x). Then limx→−∞ f ′(x) = 0.

The following lemma establishes the boundary behavior of V̂ 1 (θ), in an analogous way as Lemma OA.1

establishes the boundary behavior of the continuation value of the large agent.

Lemma OA.4 V̂ 1 (θ) satisfies

lim
θց0

θV̂ 1
θ (θ) = lim

θց0
(θ)

2
V̂ 1
θθ (θ) = 0.

Proof. Transformation (OA.49) together with the previously used V 1
t = Y 1−γ J̃1 (θt) imply that

V̂ 1 (θ) = β1−γ

(
(1− γ) J̃1

(
θ1
)

ζ1 (θ)
1−γ

)ρ

. (OA.50)

Think of V̂ 1 as a function of log θ, where we are interested in the limiting behavior as log θ → −∞. We have

θV̂ 1
θ = V̂ 1

log θ and (θ)
2
V̂ 1
θθ = V̂ 1

(log θ)2 − V̂ 1
log θ. (OA.51)

Repeatedly differentiating (OA.50) and exploiting the local behavior of J̃ (θ) as θ ց 0, we conclude that the

assumptions of Lemma OA.3 hold, and thus both expressions in (OA.51) converge to zero as θ ց 0.

Proof of Proposition 5.3. The drift and volatility coefficients in (27) depend explicitly on θ because A1

and θ are linked through

A1
t = Ytζ

1 (θt)β
− 1

ρ

[
(1− γ) V̂ 1 (θt)

] 1−ρ
1−γ

1

ρ

. (OA.52)

where we utilized the homogeneity property from (OA.49). Recall that we are interested in the characteriza-

tion of the limiting solution as θ ց 0. The associated HJB equation leads to a second-order ODE (omitting

dependence on θ)

0 = max
(C1,π1,ν1)

1

1− ρ
β

1

ρ

(
(1− γ) V̂ 1

)1− 1−ρ
1−γ

1

ρ

(OA.53)

+ V̂ 1 (1− γ)

(
−

β

1− ρ
+ µA1 + u1σA1 +

1

2
(1− γ) (σA1)

2

)
+

+ V̂ 1
θ θ
(
µθ + u1σθ + (1− γ)σθσA1

)
+ V̂ 1

θθ (θ)
2 1

2
(σθ)

2 ,

which yields the first-order conditions on C1
t and π1

t :

C1
t

A1
t

= β
1

ρ

(
(1− γ) V̂ 1 (θt)

)− 1−ρ
1−γ

1

ρ

(OA.54)

π1
t =

[ξ (θt)]
−1

+ µA (θt) + u1σA (θt)− r (θt) +
θV̂ 1

θ (θt)

V̂ 1(θt)
σθ (θt) σA1 (θt)

γ (σA (θt))
2 ,

where µA1 and σA1 are the drift and volatility coefficients on the right-hand side of (27), and µθ and σθ are

the coefficients associated with the evolution of dθt/θt in (25). The portfolio choice π1 almost corresponds to

the standard Merton (1971) result, except the last term in the numerator which explicitly takes into account
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the covariance between agent’s 1 wealth and the evolution in the state variable θ imposed by (OA.52). This

term accounts for agent’s 1 knowledge about the impact of portfolio decisions of the ‘small’ class of agents

on equilibrium prices.

Results from Lemma OA.4 imply that this term, represented by the derivatives of the agent’s continuation

value, vanishes as θ ց 0, and we obtain the limit for V̂ 1 (θ) and the evolution of A1 in closed form. The agent

understands that asymptotically as θ ց 0 the portfolio decisions made by agents of her type do not have

any impact on local equilibrium price dynamics, and thus behaves as if she resided in an economy populated

only by agent 2. Utilizing these results from Lemma OA.4 to deduce which terms in ODE (OA.53) vanish

and Proposition 5.1 to determine the limiting values of the remaining coefficients, we obtain

lim
θց0

β
1

ρ

(
(1− γ) V̂ 1 (θ)

)− 1−ρ
1−γ

1

ρ

= lim
θց0

[
ξ1 (θ)

]−1
= β − (1− ρ)

(
µy + u2σy +

1

2
(1− γ) (σy)

2

)

−
1

2

1− ρ

ρ

[
2
(
u1 − u2

)
σy +

(
u1 − u2

)2

γ

]
,

which is the limiting consumption-wealth ratio for agent 1. The formulas for the wealth share invested in

the claim on aggregate consumption and the coefficients of the wealth process are obtained by plugging in

the previous results into expressions (27) and (OA.54).

Proof of Proposition OA.1. Given convergence to the homogeneous economy counterpart, the expression

for limθց0 ν
2 (θ) is given by equation (OA.33). Utilizing the formula for the wealth-consumption ratio (23)

and the result from Proposition 5.3 then yields

lim
θց0

ν1 (θ) = lim
θց0

β
1− γ

1 − ρ
+ (γ − ρ)

[
ξ1 (θ)

]−1
= β + (ρ− γ)

(
µy + u2σy −

1

2
γσ2

y

)
+

+
1

2

ρ− γ

ρ

[
2
(
u1 − u2

)
σy +

(
u1 − u2

)2

γ

]
.

The first two terms in the last expression are equal to the limit for ν2 (θ), which yields the result for the

difference of the discount rates. The expression for part (ii) is obtained by symmetry.
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