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ABSTRACT. We obtain both necessary and sufficient conditions for existence and
uniqueness of equilibrium asset prices in discrete-time, arbitrage free settings with
dividend streams that have no natural termination date. We connect our condi-
tions, and hence the problem of existence and uniqueness of asset prices, with the
recent literature on stochastic discount factor decompositions using the principal
eigenpairs of valuation operators. In addition, we show how local spectral radius
theory can be used to obtain and interpret these principal eigenvalues.
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1. INTRODUCTION

One of the most fundamental problems in economics is the pricing of an asset
paying a stochastic cash flow. In arbitrage-free discrete-time environments, the
equilibrium price process {Pt}t>0 associated with a dividend process {Dt}t>1 must
obey

Pt = Et Mt+1(Pt+1 + Dt+1) for all t > 0, (1)
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where {Mt}t>1 is the pricing kernel or stochastic discount factor (SDF) process of
a representative investor.1 The two questions addressed in this paper are:

1. When can we associate to each pair {Dt, Mt}t>1 a unique and finite equilib-
rium price process {Pt}t>0?

2. How can we characterize and evaluate such prices when they exist?

The first question can be formulated more precisely as follows: If we regard (1) as
a map from the joint distribution of {Dt, Mt} to a price process {Pt} satisfying (1),
then when—and under what circumstances—is this mapping well defined? The
second question concerns (a) existence and uniqueness of Markov equilibria and
(b) connection to prices obtained by forward iteration.2

These issues are of ongoing concern for researchers who build asset pricing mod-
els, since existence, uniqueness and stability of equilibria are directly tied to the
relative predictive power of their models (and since no one wishes to make state-
ments about the implications of their models that are vacuous).3 At the same time,
issues of existence and uniqueness have been sidelined in the applied literature
in recent years because the majority of applied work has been conducted using
approximation techniques like various types of perturbation methods, producing
models that are easier to manipulate and interpret.

There is now, however, substantial evidence that these approximation methods
may distort outcomes in ways that matter for quantification, interpretation and

1Here and below, price is calculated for ex-dividend contracts. For overviews, see Kreps (1981),
Cochrane and Hansen (1992), Hansen and Renault (2009) or Duffie (2010).

2Throughout the paper, we concern ourselves only with fundamental solutions rather than ra-
tional bubbles. For a recent discussion of the latter see Brunnermeier (2016).

3For example, consider the study of Epstein and Zin (1989), who write “....we have not demon-
strated the consistency of our analysis with a general equilibrium framework such as Lucas’ (1978)
stochastic pure endowment economy. Such an extension would need to confront the questions of
existence and uniqueness of equilibrium asset prices. Moreover, Lucas’ contraction mapping tech-
niques would not suffice for the same reasons that those techniques were inadequate in establishing
Theorem 3.1. Thus we leave such an extension to a separate paper.” Three decades later this issue
remains unresolved. The same is true for a variety of asset pricing models, with a range of SDF and
dividend specifications.
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prediction of asset prices. For example, Pohl et al. (2018) find that numerical ap-
proximations associated with Campbell–Shiller log-linearization significantly dis-
tort findings on risk premia and lead to large errors in measurements related to
volatility and the price dividend ratio.

In addition to this demand for a better understanding of models that embed sub-
stantial nonlinearities, progress in understanding asset price dynamics over long
horizons and their relationship to risk preferences has been made through new
work on stochastic discount factor decompositions in Alvarez and Jermann (2005),
Hansen and Scheinkman (2009), Hansen (2012), Christensen (2017) and Qin and
Linetsky (2017). These decompositions are used to extract a permanent growth
component and a martingale component from the stochastic discount process, with
the rate in the permanent growth component being driven by the principal eigen-
value of the corresponding valuation operator. While this literature uses the per-
manent growth component to gain insight on the structure of valuation for pay-
offs at alternative horizons, it is natural to ask how these same ideas might be
applied to existence and uniqueness of equilibrium asset prices in infinite horizon
economies.

In the present paper we connect this line of research on the study of principal
eigenvalues of valuation operators to existence and uniqueness of equilibrium as-
set prices and price-dividend ratios in infinite horizon settings. We obtain both
necessary and sufficient conditions for existence and uniqueness of equilibrium
asset prices based around the principal eigenpairs of valuation operators. In addi-
tion, we show how local spectral radius theory can be used to obtain and interpret
these principal eigenvalues.

To understand our methodology, a useful way to begin is to view the SDF Mt+1

in (1), which serves to deflate payoffs in future states, as a random “contraction
factor” around which a contraction mapping argument can be built, looking for-
wards in time. The operator in this contraction argument has as its fixed point an
equilibrium price function, which is a map from the state process into an equilib-
rium price process. The operator itself is referred to below as the equilibrium price
operator.

In the risk neutral case, where Mt+1 = β and β < 1, we have a uniform contraction
rate of β in every state of the world, the equilibrium price operator is a contraction
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of modulus β, and existence and uniqueness of the price process is immediate.
Outside of this case, however, the SDF is random and Mt+1 > 1 usually holds on a
set of positive probability—since payoffs in bad states are highly valued. Contrac-
tion based arguments must confront this positive probability of expansion.

An early example of a successful study in this context is Lucas (1978), who uses
a change-of-variable argument to remove the stochastic component from the con-
traction coefficient in his model. The model in question has SDF

Mt+1 = β
u′(Ct+1)

u′(Ct)
, (2)

where {Ct} is a stationary consumption process, β is a state independent discount
component and u is a period utility function. By solving for u′(Ct)Pt instead of Pt

directly, Lucas (1978) obtains a modified pricing operator with contraction modu-
lus equal to β.

This methodology can be generalized. For example, while Lucas (1978) assumes
that dividends are stationary, one can make a similar argument in the case where
dividend growth is stationary instead (see, e.g., Mehra and Prescott (2003)). Also,
while Lucas (1978) requires that utility and dividends are bounded, so that the
equilibrium price operator acts in a space of continuous bounded functions, sim-
ilar results can be obtained in unbounded settings by truncating innovations or
working with weighting functions and weighted supremum norms (see, e.g., Al-
varez and Jermann (2005) or Brogueira and Schütze (2017)). Finally, the change-
of-variable technique works not just for SDFs of the form (2), but also for any SDF
that can be decomposed into the product of a state independent discount factor
and a ratio of stationary factors.

Unfortunately, for many SDFs used in modern asset pricing applications, no such
decomposition exists and the change-of-variable technique fails. Examples include
those found in Epstein and Zin (1989), Bansal and Yaron (2004) and Schorfheide
et al. (2018). Moreover, a substantial body of evidence shows that SDFs that possess
a stationary factorization of the form (2) cannot match asset price data in several
important dimensions (see, in particular, Borovička et al. (2016)).

When factoring Mt+1 is not possible, one can still consider treating the entire SDF
as a “random contraction factor.” For example, even if Mt+1 > 1 holds with posi-
tive probability, a contraction argument can still be constructed if, say, EtMt+1 < 1
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in “most” states. This is the approach taken in Calin et al. (2005), who obtain exis-
tence and uniqueness results for equilibrium prices for a class of models involving
habit formation by using contraction arguments in a space of integrable functions.

However, there is a common problem with all of the approaches to existence and
uniqueness of asset prices listed above: they require contraction in one step. This
condition is too tight, in the sense that it excludes many stable models with well
defined equilibrium prices. In fact modern asset pricing models aimed at quanti-
tative applications often select parameterizations close to the boundary between
stability and instability (see, e.g., sections 5.2–6.1). In such settings, conditions
based on one step contractions fail and provide no useful information.

Here we adopt an alternative approach that considers instead discounting over the
long run, using the implied n period state price deflator ∏n

i=1 Mt+i with large n,
and requiring only that contraction occurs “on average, eventually.” For example,
we show that, assuming a stationary dividend process and some basic regularity
on the structure of the problem, the equilibrium price operator is a L1 contraction
at some finite power whenever

lim
n→∞

{
E

n

∏
t=1

Mt

}1/n

< 1. (3)

From this we obtain existence and uniqueness of equilibrium asset prices. (When
dividend growth is stationary, rather than dividends, condition (3) is modified to
feature a dividend-growth adjusted SDF.)

Results for elementary cases are easily recovered from condition (3). For example,
in the risk neutral case Mt = β, the left hand side of (3) is just β. If {Mt} is random
but IID, then the limit in (3) is EMt and hence EMt < 1 is sufficient for stability.
Moreover, for transition independent SDFs such as (2), intermediate terms cancel
when we take the product in (3), leading to simple conditions that recover (and
extend) classical results.

For more complex SDFs, such as those arising from recursive preferences or habit
formation, (3) can be evaluated either analytically, by calculating expectations and
taking limits, or numerically, analogous to the way that spectral radius conditions
of finite dimensional systems are examined in order to test stability. Examples of
the analytical approach are given in sections 5.1 and 6.1. The numerical approach
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is used to show equilibrium asset prices exist and are unique for the Epstein–Zin
specifications adopted in Bansal and Yaron (2004) and Schorfheide et al. (2018).
The numerical implementations exploit the fact that the expression in (3) is easily
approximated by Monte Carlo when {Mt} can be simulated. This calculation turns
out to be stable and accurate even for moderate simulation runs (see section 5.1).

The above discussion corresponds to one special case of our results, where the un-
derlying function space is L1. We also study outcomes in other function spaces,
the benefit of which is that varying the function space introduces the possibility
of imposing additional structure on the solution to the problem, such as continu-
ity, or finiteness of second moments. Working in an abstract setting that includes
such function spaces, we show that existence and uniqueness of equilibrium asset
prices hold whenever r(V) < 1, where r(V) is the spectral radius of the valuation
operator V that maps future payoffs to current values via the set of state price de-
flators embedded in the stochastic discount factor. The L1 results are a special case
because, as we show using local spectral radius results, the limit in (3) is equal to
r(V) when the function space is L1.

By using long run average contractions as determined by the spectral radius of the
valuation operator, we obtain conditions that are very close to necessary—in con-
trast to the conditions based on one step contractions discussed above. For exam-
ple, we show via an application of the Krein–Rutman theorem that if the valuation
operator V is also compact, then r(V) > 1 implies that Tn is not a contraction for
any n, and, more importantly, that no equilibrium price function exists. We also
use local spectral radius conditions to weaken the compactness requirement in the
case of L1, since compactness is relatively stringent in this case.

The rest of our paper is structured as follows. Section 2 sets up a general version
of the problem. Section 3 states our main results. Applications are treated in sec-
tions 4 and 5. Proofs are deferred to the appendix.

2. PRELIMINARIES

In this section we set out the existence and uniqueness problems for asset prices
considered in the paper.
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2.1. Forward Looking Recursions. Consider the forward looking model

Yt = Et [Φt+1(Yt+1 + Gt+1)] for all t > 0, (4)

where {Φt} and {Gt} are given nonnegative stochastic processes and {Yt} is en-
dogenous. One version of (4) is the equilibrium price problem (1), where {Yt} is
the price process, {Gt} is cash flow and {Φt} is the SDF. Another version arises
when dividends are nonstationary, in which case dividing (1) by Dt transforms the
endogenous variable into the price-dividend ratio Yt = Pt/Dt, with Gt+1 = 1 and
Φt+1 = Mt+1Dt+1/Dt.

We assume that {Φt} and {Gt} admit the representations

Φt+1 = φ(Xt, Xt+1, ηt+1) and Gt+1 = g(Xt, Xt+1, ηt+1) (5)

where {Xt} is an underlying state process, {ηt} is a W-valued innovation sequence
and φ and g are Borel measurable maps from X× X×W to R+. The sets X and W

are arbitrary Polish spaces.4 The state process is assumed to be stationary and Mar-
kovian. The representations in (5) replicate the general multiplicative functional
specifications considered in Hansen and Scheinkman (2009) and Hansen (2012),
and are sufficient for all problems we consider.

A stochastic process {Yt} is called a solution of the pricing recursion (4) if it is
nonnegative, finite P-almost everywhere and (4) holds P-almost surely.

Forward iteration yields the candidate solution

YF
t := Et

[
∞

∑
n=1

n

∏
i=1

Φt+i Gt+n

]
, (6)

which states that current price equals current expectation of total lifetime cash flow
appropriately discounted. While (6) can be understood intuitively as the “funda-
mental solution,” we refer to it for now as the forward projection, since it does not
yet meet our definition of a solution (it could for example be infinite).

In what follows, the Borel sets of X are denoted by B and the stochastic kernel
generating {Xt} is denoted by Π.5 The process {Xt} is defined on some under-
lying probability space (Ω, F ,P) and satisfies P{Xt+1 ∈ B |Xt = x} = Π(x, B)

4The Polish assumption, which requires that X and W are separable and completely metrizable,
is very weak and satisfied in all applications of which we are aware.

5In particular, Π is a function from (X, B) to [0, 1] such that B 7→ Π(x, B) is a probability measure
on (X, B) for each x ∈ X, and x 7→ Π(x, B) is B-measurable for each B ∈ B.
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for all x ∈ X and B ∈ B. The innovation process {ηt} is assumed to be IID and
independent of {Xt}. Each ηt has common distribution ν. The common marginal
distribution of each Xt is denoted by π. Relations such as (4) and (6) are under-
stood as P-almost sure equalities, while conditional expectations are with respect
to the natural filtration generated by {Xt}.

2.2. Markov Solutions. Given the assumptions on the exogenous processes made
in (5), it is natural to seek a Markov solution Y∗t = h∗(Xt) to the recursive pricing
equation (4), where h∗ is a fixed function in some candidate set H. We require
H to be a Banach lattice of real-valued functions on X with the usual notions of
pointwise order, addition and scalar multiplication.6 Let ‖ · ‖ denote the norm
on H and let 6 denote the partial order. Let H+ denote the positive cone of H,
consisting of all functions inH taking only nonnegative values.

As usual, the norm of a bounded linear operator L fromH to itself is defined as

‖L‖ := sup
‖ f ‖=1

‖L f ‖.

The spectrum σ(L) of L is all scalars λ ∈ C such that L − λI fails to be bijective.
A scalar λ is called an eigenvalue of L if there exists a nonzero f ∈ H such that
L f = λ f . The function f is then called an eigenfunction. The set σ(L) is nonempty
and compact in the complex plane, and every eigenvalue of L lies in σ(L). The
spectral radius of L is r(L) := max{|λ| : λ ∈ σ(L)}. Since H is a Banach space,
Gelfand’s formula holds:

r(L) = lim
n→∞
‖Ln‖1/n. (7)

The operator L is called compact if the image under L of the unit ball in H lies in a
compact subset ofH. L is called positive if it maps the positive coneH+ into itself.

In what follows, the notion of quasi-interiority will play a significant role, allowing
us to tie spectral radius conditions to local spectral radius results, thereby sharp-
ening our findings and allowing us to obtain clean representations of our stability

6A Banach lattice is a Riesz space that is also complete. To accommodate unbounded solutions,
the setHwill in some instances be identified with an Lp space. Elements ofH are then equivalence
classes of functions, rather than functions per se and pointwise statements such as equalities and
inequalities are understood as almost everywhere requirements.
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conditions. To define this notion of interiority, let L be all continuous linear func-
tionals ` : H → R such that `(h) > 0 whenever h ∈ H+. A function h ∈ H+ is
called quasi-interior toH+ if `(h) > 0 for every nonzero ` ∈ L.

Example 2.1. If X is compact and H is C (X), the set of continuous functions on X

endowed with the supremum norm, then H is a Banach lattice with the property
that any strictly positive function in C (X) is both interior to the positive cone and
also quasi-interior.7

Example 2.2. Let π be the common marginal distribution of each Xt, as above, let
p be a constant satisfying p > 1 and let H = Lp(π), the space of Borel measurable
functions g : X→ R such that

‖h‖ :=
{∫
|h(x)|pπ(dx)

}1/p
(8)

is finite. Functions equal π-almost everywhere are identified, so that (8) defines a
norm on Lp(π) and together with the pointwise order they form a Banach lattice.
While the positive cone of Lp(π) contains no interior points, every strictly positive
function in Lp(π) is quasi-interior.8

In the remainder of the paper,Hwill be one of the function spaces in examples 2.1–
2.2. The Lp setting is more general than that of C (X), since every bounded mea-
surable function on X lies in Lp(π). Moreover, every Lp(π) spaces lies in L1(π).9

Our findings on necessary conditions and principle eigenvalues of valuation op-
erators rely in part on a result, due to Zabreiko et al. (1967) and Mirosława Zima
(private communication), concerning the local spectral radii of positive compact
linear operators acting on quasi-interior points:

7 Let h ∈ C (X) be strictly positive on X. By the Riesz–Markov–Kakutani representation theorem,
for each ` ∈ L, there is regular Borel measure µ on X such that `(h) =

∫
h dµ for each h ∈ C (X). If

µ is not the zero measure, then `(h) =
∫

h dµ > 0. Hence h is quasi-interior.
8Let h ∈ Lp(π) be strictly positive π-almost everywhere on X, and let q be such that 1/p+ 1/q =

1. By the Riesz representation theorem, given nonzero ` ∈ L, there is a g ∈ Lq(π) such that
`(h) =

∫
gh dπ, where g is positive on a set of positive π measure. Evidently gh is likewise positive

on a set of positive π measure, and hence `(h) =
∫

gh dπ > 0. Hence h is quasi-interior.
9While L1(π) is therefore the most general setting, the more specialized spaces give additional

structure, as discussed in the introduction (for example, Markov solution in L2(π) have finite sec-
ond moment, while solutions in C (X) are continuous). Hence we present most of our theory in the
setting of a generic Banach latticeH.
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Theorem 2.1 (Zabreiko–Krasnosel’skii–Stetsenko–Zima). Let h be an element of H+

and let L : H → H be a compact linear operator. If L is also positive and h is quasi-interior,
then

lim
n→∞
‖Lnh‖1/n = r(L). (9)

In general, r(h, L) := lim supn→∞ ‖Lnh‖1/n is called the local spectral radius of L at
h. Under the conditions of theorem 2.1, the limit supremum equals the limit, which
in turn equals the spectral radius (cf., Gelfand’s formula in (7)). While a number of
related results can be obtained, theorem 2.1 is particularly useful because it allows
us to consider spaces where the positive cone has empty interior (e.g., the Lp spaces
in example 2.2). As we could find no complete proof published in English we
include one in the appendix.

3. RESULTS

In this section we set out the core theoretical results of the paper.

3.1. The Equilibrium Price Operator. Any Markov solution h∗ ∈ H to the price
recursion (4) must satisfy

h∗(x) =
∫ ∫

φ(x, x′, η)
[
h∗(x′) + g(x, x′, η)

]
ν(dη)Π(x, dx′) (10)

for all x ∈ X. In other words, h∗ is a fixed point of the equilibrium price operator T
defined at h ∈ H by

Th = Vh + ĝ, (11)

where

Vh(x) :=
∫

h(x′)
[∫

φ(x, x′, η)ν(dη)

]
Π(x, dx′) (12)

and
ĝ(x) :=

∫ ∫
φ(x, x′, η)g(x, x′, η)ν(dη)Π(x, dx′). (13)

We call V the valuation operator by analogy with the asset pricing models described
above.

Assumption 3.1. Together, V, ĝ andH have the following properties:

(a) The integral
∫
|h|dπ is finite for all h ∈ H.

(b) The valuation operator V mapsH to itself and ĝ is inH.
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Part (a) of assumption 3.1 means that any Markov solution Yt = h(Xt) with h ∈ H
will have finite first moment. Weakening this assumption would imply substantial
technical difficulties, since the problem definition embedded in the forward look-
ing restriction (4) is stated in terms of conditional expectations, and conditional
expectations are themselves defined in terms of unconditional expectations. Part
(b) of assumption 3.1 implies that V is a nontrivial positive linear operator on H
(nontrivial because we are assuming an arbitrage free environment) and the equi-
librium price operator T is a self-mapping both on H and H+. Any fixed point of
T inH+ is called an equilibrium price function.

Theorem 3.1. Let assumption 3.1 hold. If the valuation operator V is compact, then the
following statements are equivalent:

(a) r(V) < 1.

(b) There exists an n ∈ N such that Tn is a contraction on (H, ‖ · ‖).
(c) There exists a unique equilibrium price function h∗ inH+ such that limn→∞ Tnh =

h∗ for every h ∈ H+.

That (a) implies (b) follows directly from Gelfand’s formula. The proof that (b)
implies (c) uses an extension of the Banach contraction mapping theorem, which
implies existence of a unique, globally attracting fixed point of T in H when (b)
holds. Since H is a Banach lattice, the set H+ is closed in H and, given that T is a
self-mapping on H+, any fixed point must lie in H+. Compactness of V is not re-
quired either of these steps. On the other hand, the fact that (c) implies (a) requires
compactness of the operator because it exploits the Krein–Rutman theorem.

Theorem 3.1 opens a number of questions. First, in the stable case r(V) < 1, what is
the connection between the fixed point of T and the forward projection? Second, in
the unstable case r(V) > 1, does failure of contractivity imply failure of existence?
Third, how can one evaluate the spectral radius conveniently? We turn to these
issues below.

3.2. Further Results for the Stable Case. By theorem 3.1, the equilibrium price
operator T has a unique, globally attracting fixed point h∗ inH+ whenever r(V) <

1. The following theorem provides additional information. Note that compactness
of V is not assumed.
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Theorem 3.2. If assumption 3.1 holds and r(V) < 1, then

(a) The unique equilibrium price function h∗ is equal to ∑n>0 Vn ĝ.

(b) The process {Y∗t } defined by Y∗t := h∗(Xt) for all t solves (4).

(c) The forward projection YF
t in (6) is finite and equal to Y∗t with probability one.

(d) If, in addition, limn→∞
∫
|hn|dπ = 0 whenever {hn} ⊂ H and limn→∞ ‖hn‖ =

0, then no stationary Markov solution aside from {Y∗t } exists.

Part (a) of theorem 3.2 is an immediate consequence of the Neumann series theo-
rem. Parts (b) and (c) use the Markov property of {Xt} and assumption 3.1. The
statement in part (d) that no other stationary Markov solution exists means that
if {Yt} satisfies (4) and {Yt} = {h(Xt)} for some h ∈ H, then{Yt} and {Y∗t } are
indistinguishable. That is,

P{Yt = Y∗t for all t} = 1. (14)

The condition on the norm ofH in (d) says that convergence in this norm is stronger
than convergence in L1(π). It is satisfied in the settings of examples 2.1–2.2. It can
be further improved in some environments by dropping the Markov restriction.
The appendix gives one example (see proposition 8.1).

3.3. Further Results for the Unstable Case. What happens when r(V) exceeds
unity? We know that Tn is not a contraction onH for any n ∈ N from theorem 3.1,
and that the statement in (c) of theorem 3.1 fails. However, this implies neither
absence nor multiplicity of fixed points. Moreover, it is not immediately obvious
that the results in theorem 3.2 fail when r(V) > 1. To see why, consider the equilib-
rium price function h∗ = ∑∞

n=0 Vn ĝ from (a) of theorem 3.2. Even if r(V) > 1, the
operator V can still have some eigenvalues with modulus strictly less than unity. If
ĝ lies in a space spanned by the corresponding eigenfunctions, then the expression

∑∞
n=0 Vn ĝ can be well defined.

Nevertheless, r(V) > 1 does indeed imply divergence, as well as absence of a pos-
itive fixed point, when some regularity conditions are imposed. The next theorem
gives details.

Theorem 3.3. Let H be such that all strictly positive elements are quasi-interior to H+.
If, in addition, V is compact and r(V) > 1, then no equilibrium price function exists.
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The intuition behind this result is that ĝ is positive by assumption and hence the
dynamics of the iterates Vn ĝ are similar to the dynamics of Vne, where e is the prin-
cipal eigenfunction (which is also positive by the Krein–Rutman theorem when-
ever the latter holds). If r(V) > 1, then Vne diverges. Hence Tne diverges. The
connection between the dynamics of Vn ĝ and dynamics of Vne are formalized us-
ing the local spectral radius result in theorem 2.1.

3.4. Further Results for Integrable Functions. In this section we specialize to the
case H = L1(π) from example 2.2. This setting is important because the space
L1(π) is large. For example, it allows us to tackle settings where the dividend pro-
cess is unbounded, as is commonly assumed in applications. Moreover, as shown
below, the local spectral radius condition yields a particularly simple expression
for the spectral radius of the valuation operator V when we specialize to L1(π).

Note that L1(π) is not reflexive whenever the state space is infinite, and hence
conditions for compactness of operators are stringent—and typically difficult to
verify. This is potentially problematic when we wish to apply theorem 3.1 or the-
orem 3.3 because of the compactness requirement on V. In order to weaken this
requirement, we introduce the following assumption:

Assumption 3.2. The state space X is endowed with some σ-finite Borel measure µ

and the stochastic kernel Π for the state process has a density kernel π(· | ·) with
respect to µ.10 Moreover, the function ψ : X→ R defined by

ψ(x) := sup
x′∈X

{∫
φ(x, x′, η)ν(dη) · π(x′ | x)

π(x′)

}
(15)

satisfies
∫

ψ dπ < ∞.

Typically, X will be a subset ofRd and µ is either Lebesgue measure or the counting
measure. Below we show that assumption 3.2 is satisfied in some standard asset
pricing applications.

As discussed in the appendix, assumption 3.2 implies that the valuation operator V
is continuous as a linear operator on L1(π). In fact, when (15) is valid, V is a Hille–
Tamarkin operator on L1(π), which we show is sufficient to obtain an L1 version
of the local spectral radius result in theorem 2.1 without imposing compactness:

10That is, π is a real-valued Borel measurable map on X × X satisfying Π(x, B) =∫
B π(x′ | x)µ(dx′) for every B ∈ B.
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Proposition 3.4. If assumption 3.2 holds, then the sequence {rn
Φ} defined by

rn
Φ :=

{
E

n

∏
i=1

Φi

}1/n

(16)

converges to r(V) as n→ ∞.

In fact the limit of rn
Φ is precisely r(1X, V), the local spectral radius of the valuation

operator at 1X, the function identical to unity on X. The proof of proposition 3.4
takes the expression limn→∞ ‖Lnh‖1/n from (9) and then replaces L with V, h with
1X and ‖ · ‖ with the L1 norm. It then uses the law of iterated expectations to
simplify the resulting expression. This iterated expectation step works because,
for positive elements of L1(π), the L1 norm is additive.

By proposition 3.4, if assumption 3.2 holds and limn→∞ rn
Φ < 1, then all the stability

results in theorem 3.2 hold with H = L1(π). This verifies one of the claims put
forward in the introduction.

The next proposition shows that the compactness condition used to study the un-
stable case r(V) > 1 in theorem 3.3 can be weakened to assumption 3.2 when
we are working in L1. It also strengthens the nonexistence result in theorem 3.3
beyond Markov solutions. The proof uses of proposition 3.5 uses proposition 3.4.

Proposition 3.5. If assumption 3.2 holds and r(V) > 1, then no equilibrium price func-
tion exists in L1. Moreover, the recursive pricing equation (4) has no stationary solution
with finite first moment.

3.5. Calculating the Spectral Radius. In terms of computation, one benefit of the
result in (16) is that it allows us to approximate r(V) via Monte Carlo. In particular,
we have

lim
m→∞

{
1
m

m

∑
j=1

n

∏
i=1

Φ(j)
i

}1/n

= rn
Φ P-almost surely, (17)

where each Φ(j)
1 , . . . , Φ(j)

n is an independently simulated path of {Φt}. This follows
from the strong law of large numbers combined with the fact that Zn → Z P-a.s.
implies g(Zn)→ g(Z) P-a.s. whenever g : R→ R is continuous.

The benefit of using (17) to calculate r(V) is that one needs only to be able to sim-
ulate the (growth adjusted) stochastic discount factor process. Such a calculation
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avoids discretization and is highly parallelizable, since each path is simulated in-
dependently. It is accurate in the applications we consider with only moderate
sample sizes (see, e.g., tables 1–2 on page 20, which compares the Monte Carlo
calculations with the true value of the spectral radius calculated analytically).

A second point regarding computation of r(V) is that, even in a setting where H
is some Banach lattice other than L1(π), the result in proposition 3.4 will be valid
for any numerical implementation. The reason is that, in numerical calculations,
X is always a finite subset of the floating point numbers, in which case H, as a
Banach lattice of real-valued functions defined on a finite set, is isomorphic and
strongly equivalent to Rd endowed with the norm topology, where d is the num-
ber of elements in the finite set. In particular, with d := cardX, each function in H
is identified with a unique vector inRd and any two norms on a finite dimensional
Banach space are strongly equivalent.11 It then follows from Gelfand’s formula
that the spectral radius of V is identical, regardless of which norm we use. Hence
it suffices to calculate the spectral radius in the L1(π) setting. Moreover, assump-
tion 3.2 is always satisfied when X is finite, so proposition 3.4 applies.

4. APPLICATIONS PART I: STATIONARY DIVIDENDS

We now turn to applications, focusing in this section on some well known models
where dividends themselves are required to be stationary. (In section 5 we consider
more empirically plausible assumptions.) The space of candidate solutions will be
L1(π), where, as before, π is the marginal distribution of the state process {Xt}.

4.1. Bounded Utility. Consider the asset pricing problem of Lucas (1978), where
the price process obeys (1) and the stochastic discount factor is

Mt+1 = β
u′(Ct+1)

u′(Ct)
. (18)

Here Ct is consumption, β is a discount factor, and u is utility. Our first goal is
to recover the existence and uniqueness result for prices obtained in Lucas (1978)
using theorem 3.2.

11Two norms ‖ · ‖ and ‖ · ‖′ on a vector space E are strongly equivalent if there exist strictly
positive constants k and ` such that k‖x‖ 6 ‖x‖′ 6 `‖x‖ for all x in E.
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To match the result in Lucas (1978), we take Yt := Pt u′(Ct)) to be the endogenous
object rather than Pt, where the latter represents the price of a claim to a stationary
dividend stream {Dt}. Equation (1) yields

Yt = Et
[
β(Yt+1 + u′(Ct+1)Dt+1)

]
. (19)

In equilibrium, Ct = Dt = d(Xt) for all t, where {Xt} is the Markov state process
and d is a given function. Equation (19) is a version of (4) with Φt = β and Gt+1 =

u′(Dt+1)Dt+1. The functions φ and g in (5) are therefore

φ(x, x′, η) := β and g(x, x′, η) := u′(d(x′))d(x′). (20)

The function ĝ defined in (13) becomes

ĝ(x) = β
∫

u′(d(x′))d(x′)Π(x, dx′). (21)

Lucas (1978) assumes that u is concave and bounded, which in turn gives 0 6
u′(d(x′))d(x′) 6 N for some N ∈ N. Hence ĝ is bounded by βN, and therefore
an element of L1(π). Moreover, Vg = βg for any g ∈ L1(π), so V maps L1(π) to
itself, implying that assumption 3.1 holds.

Moreover, the fact that Vg = βg for any g ∈ L1(π) implies that the range space
of V is one dimensional. In particular, the only eigenvalue of V is β, and hence
the spectral radius r(V) of V is also equal to β. (One can also obtain the same
conclusion by observing that, since Φt = β, the expression on the right hand side
of (16) is equal to β for all n.) Theorem 3.2 then implies the existence of a unique
stationary Markov equilibrium whenever β < 1. This is the same conclusion as
proposition 3 of Lucas (1978).

4.2. Constant Relative Risk Aversion. The previous result relies on boundedness
of utility, an assumption that is rarely satisfied in applications. We can drop this
assumption provided that ĝ ∈ L1(π) continues to hold true. To give one example,
consider the work of Brogueira and Schütze (2017), who use a weighted sup norm
approach to extend the results of Lucas (1978) to the case u(c) = c1−γ/(1− γ) with
d(x) = exp(x) and {Xt} following

Xt+1 = ρXt + b + σξt+1, {ξt}
IID∼ N(0, 1) and |ρ| < 1, (22)
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In this case the definitions of φ and g in (20) are unchanged, while ĝ in (21) becomes

ĝ(x) = β exp
{
(1− γ)

(
ρx + b +

(1− γ)σ2

2

)}
. (23)

Since π is Gaussian, we have ĝ ∈ L1(π). The conditions of theorem 3.2 are again
satisfied and hence a uniquely defined Markov solution Y∗t = h∗(Xt) exists. This
recovers the main result of Brogueira and Schütze (2017) without their requirement
of a positively correlated state process and several additional parameter restric-
tions. We can of course go further, dropping the AR(1) assumption and modifying
the utility and dividend process specifications, provided that ĝ(Xt) still has a finite
first moment.

5. APPLICATIONS PART II: STATIONARY DIVIDEND GROWTH

The standard theory discussed in the previous section takes dividends to be sta-
tionary. Such models can be brought closer to the data by assuming instead that
dividend growth is stationary. In this case we aim to solve for the price-dividend
ratio Qt := Pt/Dt, which, in view of (1), must satisfy

Qt = Et

[
Mt+1

Dt+1

Dt
(Qt+1 + 1)

]
. (24)

Let us summarize the implications of the preceding results for the solution of the
price-dividend ratio Qt in (24). Comparing (24) and (4), in this context we have

Φt+1 = φ(Xt, Xt+1, ηt+1) = Mt+1
Dt+1

Dt
(25)

and Gt+1 = g(Xt, Xt+1, ηt+1) = 1. Let

rM := lim
n→∞

{
E

n

∏
i=1

Mi
Dn

D0

}1/n

. (26)

whenever the limit exists. The next result summarizes the L1 theory of section 3.4
in terms of its implications for (24), the forward looking recursion for the price-
dividend ratio.

Proposition 5.1. If the conditions of assumption 3.2 hold, then the limit in (26) is well-
defined and finite. Moreover,
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(a) rM = limn→∞ rn
Φ = r(V), where rn

Φ is as defined in (16) and V is the spectral
radius of the valuation operator associated with (25).

(b) If rM < 1, then a unique stationary Markov solution Q∗t = h∗(Xt) for (24) exists,
where h∗ ∈ L1(π). In particular, the conclusions of theorem 3.2 are valid.

(c) Conversely, if rM > 1, then the price-dividend ratio equation (24) has no stationary
solution with finite first moment.

In the rest of this section we connect these results to several applications.

5.1. CRRA Utility and Stochastic Dividend Growth. Consider a benchmark as-
set pricing model as found in, say, Mehra and Prescott (2003), where ln Dt+1 −
ln Dt = Xt+1 for some stationary Markov process {Xt}. With Ct = Dt and CRRA
utility, this yields

Φt+1 := Mt+1
Dt+1

Dt
= β

(
Ct+1

Ct

)1−γ

= β exp {(1− γ)Xt+1} . (27)

Hence φ(x, x′, η) = β exp((1− γ)x′). Let {Xt} follow the AR(1) process in (22).

Consider first assumption 3.2. Connecting the definition of ψ in that assumption
to the present application, we have

ψ(x) ∝ sup
x′∈R

exp
{
(1− γ)x′ − (x′ − ρx− b)2

2σ2 +
(x′ − µs)2

2σ2
s

}
. (28)

Here ∝ means “proportional to,” µs is the stationary mean b/(1− ρ) and σ2
s is the

stationary variance σ2/(1− ρ2). The stationary variance is larger than the condi-
tional variance σ2, so the supremum in (28) is finite. Simple arguments show that,
after substituting the maximizing value of x′ into the right hand side of (28), we
have ψ(x) ∝ exp(a0 + a1x + a2x2) for suitable constants ai. As the stationary distri-
bution of a Gaussian AR(1) process, π is itself Gaussian, and hence

∫
ψ dπ is finite.

In particular, assumption 3.2 and the conditions of proposition 5.1 hold.

As a consequence, existence of a finite price-dividend ratio depends on

rM = lim
n→∞

{
E

n

∏
i=1

Φi

}1/n

= β lim
n→∞

exp

{
(1− γ)

n

∑
i=1

Xi

}1/n

,
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where the second equality is due to (27). Since {Xt} obeys (22), we have

exp

{
(1− γ)

n

∑
i=1

Xi

}1/n

= exp
{
(1− γ)

µn

n
+

(1− γ)2s2
n

2n

}
,

where µn is the expectation of ∑n
i=1 Xi and s2

n is its variance. Elementary manipu-
lations yield

s2
n

n
=

σ2

1− ρ2

{
1 +

2(n− 1)
n

ρ

1− ρ
− 2ρ2

n
1− ρn−1

(1− ρ)2

}
.

Hence

rM = r(V) = β exp
{
(1− γ)

[
b

1− ρ
+

1− γ

2
σ2

(1− ρ)2

]}
. (29)

Proposition 5.1 implies that a unique solution with finite first moment exists—and
equals the forward projection—whenever (29) evaluates to strictly less than unity.
If, on the other hand, rM > 1, then no such solution exists.

The spectral radius r(V) in (29) represents the discounted risk-adjusted growth
rate of aggregate consumption Ct, and reveals the dual role parameter γ plays un-
der CRRA utility. The term in brackets is the average risk-adjusted consumption
growth rate. The rest of the expression constitutes intertemporal discounting, con-
sisting of the time-preference parameter β and the contribution of intertemporal
substitution captured by the term 1− γ multiplying the average growth rate.

Since an analytical expression for the spectral radius exists, the current setting pro-
vides a useful test case for the proposal to calculate the spectral radius of the val-
uation operator using Monte Carlo, via (17). Our interest is in examining whether
or not the Monte Carlo based expressions are sufficiently accurate for moderate
sample sizes. Tables 1–2 are supportive. The parameters here are chosen to match
Mehra and Prescott (2003), with β = 0.99, ρ = 0.941, γ = 2.5, σ = 0.000425 and
b = 0.00104 in table 1, while in table 2 we shifted γ to 2.0. The actual value of r(V)

indicated in the table caption is calculated from the closed form expression (29).
The interpretation of n and m in the table is consistent with the left hand side of
(17). In both tables the approximation is accurate up to five decimal places in all
simulations.

5.2. Long Run Risk Part I. Next we turn to an asset pricing model with Epstein–
Zin utility and stochastic volatility in cash flow and consumption estimated by
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TABLE 1. Monte Carlo spectral radius estimates when r(V) = 0.9659169

n = 400 n = 600 n = 800 n = 1000 n = 1200

m = 10000 0.9659158 0.9659146 0.9659107 0.9659181 0.9659126
m = 15000 0.9659137 0.9659146 0.9659154 0.9659193 0.9659161
m = 20000 0.9659119 0.9659144 0.9659159 0.9659166 0.9659142
m = 25000 0.9659167 0.9659127 0.9659155 0.9659161 0.9659127

TABLE 2. Monte Carlo spectral radius estimates when r(V) = 0.9727279

n = 400 n = 600 n = 800 n = 1000 n = 1200

m = 10000 0.9727255 0.9727252 0.9727256 0.9727278 0.9727246
m = 15000 0.9727223 0.9727223 0.9727268 0.9727274 0.9727263
m = 20000 0.9727269 0.9727253 0.9727275 0.9727265 0.9727267
m = 25000 0.9727247 0.9727267 0.9727260 0.9727267 0.9727278

Bansal and Yaron (2004). Preferences are represented by the continuation value
recursion

Vt =
[
(1− β)C1−1/ψ

t + β {Rt (Vt+1)}1−1/ψ
]1/(1−1/ψ)

, (30)

where {Ct} is the consumption path extending on from time t and

Rt(Vt+1) := (EtV
1−γ
t+1 )1/(1−γ). (31)

The parameter β ∈ (0, 1) is a time discount factor, γ governs risk aversion and ψ

is the elasticity of intertemporal substitution. Dividends and consumption grow
according to

gc
t+1 = µc + zt + σt ηc,t+1,

gd
t+1 = µd + αzt + φd σt ηd,t+1,

zt+1 = ρzt + φz σt ηz,t+1,

σ2
t+1 = max

{
v σ2

t + d + φσ ησ,t+1, 0
}

,

where gd
t+1 = ln(Dt+1/Dt) and gc

t+1 = ln(Ct+1/Ct). Here {ηi,t} are IID and stan-
dard normal for i ∈ {d, c, z, σ}. The state Xt can be represented as Xt = (zt, σt).
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The SDF associated with this model is

Mt+1 = βθ

(
Ct+1

Ct

)−γ ( Wt+1

Wt − 1

)θ−1

where Wt is the aggregate wealth-consumption ratio and θ := (1− γ)/(1− 1/ψ).
See, for example, Bansal and Yaron (2004), p. 1503. Hence

Φt+1 := Mt+1
Dt+1

Dt
= βθ Dt+1

Dt

(
Ct+1

Ct

)−γ ( Wt+1

Wt − 1

)θ−1

. (32)

To obtain the value of the aggregate wealth-consumption ratio {Wt}we exploit the
fact that Wt = w(Xt) where w solves the Euler equation

βθ
Et

[(
Ct+1

Ct

)1−γ ( w(Xt+1)

w(Xt)− 1

)θ
]
= 1.

Rearranging and using the expression for consumption growth given above, this
equality can be expressed as

w(z, σ) = 1 + [Kwθ(z, σ)]1/θ,

where K is the operator

Kg(z, σ) = βθ exp
{
(1− γ)(µc + z) +

(1− γ)2σ2

2

}
Πg(z, σ) (33)

In this expression, Πg(z, σ) is the expectation of g(zt+1, σt+1) given the state’s law
of motion, conditional on (zt, σt) = (z, σ).

The existence of a unique solution w = w∗ to (5.2) in the set of continuous functions
C (X) under the parameterization used in Bansal and Yaron (2004) is established in
Borovička and Stachurski (2017) when the innovation terms {ηi,t} are truncated,
so that the state space is compact. To use this result, we study the same setting and
seek an equilibrium price-dividend ratio function in C (X). In particular, we com-
pute w∗ using the iterative method described in Borovička and Stachurski (2017),
recover Wt as w∗(Xt) for each t and evaluate Φt+1 via (32). We use this to compute
the spectral radius r(V) of the valuation operator V.

As discussed in section 3.5, to approximate r(V) in the present context, we can use
the Monte Carlo average in (17). In computing the product ∏n

t=1 Φt we express it
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as

n

∏
t=1

Φt = (βθ exp(µd − γµc))
n

× exp

(
(α− γ)

n

∑
t=1

zt − γ
n

∑
t=1

σtηc,t+1 + φd

n

∑
t=1

σtηd,t+1 + (θ − 1)
n

∑
t=1

ŵt

)
,

where ŵt+1 = ln[Wt+1/(Wt − 1)]. We generate this value m times, average and
raise to the power of 1/n to obtain the approximation of the spectral radius in
(17). Our implementation uses a JIT-compiled and parallelized implementation
based on Numba, which runs on a regular workstation in around 3 seconds when
n = 5, 000 and m = 10, 000.

At the parameter values using in Bansal and Yaron (2004), we find that r(V) =

0.9969, implying the existence of a unique equilibrium price-dividend ratio func-
tion in C (X).12 While this value is close to 1, significant shifts in parameters are
required to cross the boundary r(V) = 1. For example, figure 1 shows the spec-
tral radius r(V) calculated at a range of parameter values in the neighborhood of
the Bansal and Yaron (2004) specification via a contour map. The parameter α is
varied on the horizontal axis, while µd is on the vertical axis. Other parameters
are held fixed at the Bansal and Yaron (2004) values. The black contour line shows
the boundary between stability and instability. Instability (and absence of a finite
solution) is associated with high mean dividend growth µd and low coefficient α

on the low frequency persistent component of dividend growth.

5.3. Long Run Risk Part II. Now we repeat the exercise in section 5.2 but using
instead the dynamics for consumption and dividends in Schorfheide et al. (2018),

12Following Bansal and Yaron (2004), the parameters are γ = 10.0, β = 0.998, ψ = 1.5 µc =

0.0015, ρ = 0.979, φz = 0.044, v = 0.987, d =7.9092e-7, φσ =2.3e-6. µd = 0.0015, α = 3.0 and
φd = 4.5. See table IV on page 1489. The values of n and m in (17) in this calculation were set to
1,000 and 10,000 respectively. Although a range of alternative values were tested, none changed
the main conclusion.
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FIGURE 1. The spectral radius r(V) in the Bansal–Yaron model

which are given by

gc
t+1 = µc + zt + σc,t ηc,t+1,

gc
t+1 = µd + αzt + δσc,t ηc,t+1 + σd,t ηd,t+1,

zt+1 = ρ zt + (1− ρ2)1/2 σz,t υt+1,

σi,t = ϕi σ̄ exp(hi,t),

hi,t+1 = ρhi hi + σhi ξi,t+1, i ∈ {z, c, d}.

The innovation vectors ηt = (ηc,t, ηd,t) and ξt := (υt, ξz,t, ξc,t, ξd,t) are IID over time,
mutually independent and standard normal in R2 and R4 respectively. The state
can be represented as the four dimensional vector

Xt := (zt, hz,t, hc,t, hd,t). (34)

Otherwise the analysis and methodology for computing the spectral radius is sim-
ilar to section 5.2. The product of growth adjusted stochastic discount factors over
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FIGURE 2. The spectral radius r(V) in the Schorfheide–Song–Yaron model

n period from t = 1 is

n

∏
t=1

Φt = (βθ exp(µd − γµc))
n

exp

(
(α− γ)

n

∑
t=1

zt + (δ− γ)
n

∑
t=1

σc,tηc,t+1 +
n

∑
t=1

σd,tηd,t+1 + (θ − 1)
n

∑
t=1

ŵt

)
As before, we generate this product m times and then average to obtain the ap-
proximation of the spectral radius in (17).

Figure 2 shows the spectral radius r(V) calculated at a range of parameter values in
the neighborhood of the Schorfheide et al. (2018) specification via a contour map.
The parameter ϕd is varied on the horizontal axis, while µd is on the vertical axis.
Other parameters are held fixed at the Schorfheide et al. (2018) values. As before,
the black contour line shows the boundary between stability and instability.

6. APPLICATIONS PART III: COMPARISON WITH ALTERNATIVES

In this section we investigate how the spectral radius condition for existence and
uniqueness of asset prices constructed above compare to alternative conditions
based on one step contractions. Our results indicate that the conditions provided
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by these one step methods are too strict to be useful in modern quantitative appli-
cations.

6.1. Habit Persistence. In models with consumption externalities such as those
found in Abel (1990) and Campbell and Cochrane (1999), SDFs have the form

Mt+1 = β

(
Ct+1

Ct

)−γ s(Ht)

s(H0)
, (35)

where s is a given function and Ht is the ratio of consumption to a social stock
of past and present consumption. In Abel (1990), and in particular in the case
of “external” habit formation, the price dividend ratio implied by this stochastic
discount factor satisfies the forward recursion (24) with

Mt+1
Dt+1

Dt
= k0 exp((1− γ)(ρ− α)Xt) (36)

where k0 := β exp(b(1− γ) + σ2(γ− 1)2/2) and α is a preference parameter. The
connection between (35) and (36) is detailed in section 2.1 of Calin et al. (2005). The
state sequence {Xt} obeys (22) with b := x0 + σ2(1− γ). Here x0 is a parameter
indicating mean constant growth rate of the dividend of the asset. See Calin et al.
(2005) for details. In our notation,

φ(x, x′, η) = k0 exp((1− γ)(ρ− α)x). (37)

We wish to exploit the results in proposition 5.1, which necessitates checking con-
dition (15). We have

ψ(x) ∝ sup
x′∈R

exp
{
(1− γ)(ρ− α)x +

−(x′ − ρx− b)2

2σ2 +
(x′ − µs)2

2σ2
s

}
Similar analysis to that conducted in section 5.1 shows that ψ is in L1(π), and hence
the conditions of proposition 5.1 hold.

The spectral radius can also be computed in similar fashion to section 5.1, yielding

r(V) = k0 exp
(
(1− γ)(ρ− α)

b
1− ρ

+
(1− γ)2(ρ− α)2

2
σ2

(1− ρ)2

)
.

By proposition 5.1, a unique solution with finite first moment exists whenever
r(V) < 1 and fails to exist when r(V) > 1.

To give some basis for comparison, let us contrast the condition r(V) < 1 with the
sufficient condition for existence and uniqueness of an equilibrium price-dividend
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FIGURE 3. One step test value and spectral radius r(V) with x0 = 0.05

ratio found in proposition 1 of Calin et al. (2005), which implies a one step contrac-
tion. Since the spectral radius condition requires only eventual contraction and is
almost necessary we can expect it to be weaker than the condition of Calin et al.
(2005).

Figure 3 supports this conjecture. Each sub-figure shows the results of either the
one step or the spectral radius test at a range of parameter values. The left sub-
figure shows the one step test values obtained by evaluating the expression in
equation (7) of Calin et al. (2005). The right sub-figure gives the spectral radius
r(V). The horizontal and vertical axes show grid points for the parameters β and σ

respectively. Pairs (β, σ) with test values strictly less than one (points to the south
west of the 1.0 contour line) are where the respective condition holds. Points to
the north east of this contour line are where it fails. Inspection of the figure shows
that the sufficient condition in Calin et al. (2005) requires an unrealistic discount
factor, and fails for many parameterizations that do in fact have unique stationary
Markov equilibria.13

6.2. One Step Contractions in the Long Run Risk Model. As discussed in the
introduction, most of the effort in existing literature has gone toward providing
conditions under which the equilibrium price operator is a contraction in one step,
which allows for easy application of Banach’s fixed point theorem. The preceding

13The parameters held fixed in figure 3 are, following Calin et al. (2005), ρ = 0.98, γ = 2.5,
x0 = 0.05 and α = 1.
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section showed that this approach is problematic for a habit formation model. Let
us now consider the same scenario for the long run risk model of Bansal and Yaron
(2004).

We know from section 5.2 that the model and parameterization used in Bansal
and Yaron (2004) is stable, with a unique equilibrium price function in the posi-
tive cone of C (X) for the asset corresponding to their dividend process. This was
established by showing that the equilibrium price operator is eventually contract-
ing on average, since the spectral radius r(V) is less than unity. Here we show that
one step contraction does not lead to the same conclusion. Although our results are
tied to the specific contraction coefficient we develop, when combined with similar
findings from section 6.1, they suggest that methodologies built around one step
contractions will be ineffectual when studying realistic asset pricing problems.

To begin, consider the setting of section 5.2, and let

κ(V) = sup
x∈X

∫ ∫
φ(x, x′, η)Π(x, dx)ν(dη).

Observe that, for any two functions h and h′ in C (X) and any point x ∈ X,

|Th(x)− Th′(x)| =
∣∣∣∣∫ (h(y)− h′(y))

[∫
φ(x, y, η)ν(dη)

]
Π(x, dy)

∣∣∣∣
6
∫ ∣∣h(y)− h′(y)

∣∣ [∫ φ(x, y, η)ν(dη)

]
Π(x, dy)

Using the definition of κ(V) and letting ‖ · ‖ be the supremum norm in C (X), we
then have |Th(x) − Th′(x)| 6 κ(V)‖h − h′‖. Taking the supremum over x ∈ X,
this yields the bound

‖Th− Th′‖ 6 κ(V)‖h− h′‖.

Thus κ(V) provides a natural contraction coefficient, in the sense that if κ(V) < 1,
then T is a (one step) contraction mapping.

Figure 4 shows κ(V) for the Bansal–Yaron model over a range of parameters, with
the black contour line indicating the boundary between satisfying and failing the
condition κ(V) < 1. Evidently the Bansal–Yaron parameterization fails this cri-
terion by a wide margin. We repeated the exercise for the parameterization in
Schorfheide et al. (2018) and found a similar outcome.
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FIGURE 4. The one step coefficient κ(V) in the Bansal–Yaron model

7. CONCLUSION

In this paper we studied existence and uniqueness of equilibrium asset prices in
discrete-time infinite horizon settings. We obtained both necessary and sufficient
conditions for existence and uniqueness by connecting with the recent literature on
stochastic discount factor decompositions based around principal eigenvalues and
eigenfunctions of valuation operators. We showed how local spectral radius theory
can be used to calculate the principal eigenvalues. This procedure allowed us to
demonstrate existence and uniqueness of asset prices in well known applications
where such fundamental properties were yet to be established.

We also found that for realistic asset pricing models, one step contraction condi-
tions, which have been the focus of earlier studies on existence and uniqueness
of equilibrium asset prices, typically fail at all empirically plausible parameteriza-
tions. While this result is hardly definitive—since there may be other norms and
other contraction coefficients that enlarge the stable domain—the margin by which
the Bansal–Yaron parameterization fails the test and the unrealistic parameter val-
ues required for the test to pass suggest that future research should concentrate on
spectral radius methods rather than the one step contractions.
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8. APPENDIX

Remaining proofs are completed below.

Proof of theorem 3.1. To see that (a) implies (b), suppose that r(V) < 1. Using
Gelfand’s formula, choose n ∈ N such that ‖Vn‖ < 1. Then, for any h, h′ ∈ H
we have

‖Tnh− Tnh′‖ = ‖Vnh−Vnh′‖ = ‖Vn(h− h′)‖ 6 ‖Vn‖ · ‖h− h′‖.

To go from (b) to (c), observe that H+ is closed in H, since H is a Banach lattice.
Since V is positive, it maps H+ to itself. The remaining results follow from a well-
known extension to the Banach contraction mapping theorem (see, e.g., p. 272 of
Wagner (1982)).

To show (c) implies (a), we will make use of the Krein–Rutman theorem applied
to the operator V. In doing so, we note that the positive cone of H is reproducing
inH, since every h ∈ H can be expressed as the difference between max{h, 0} and
−min{h, 0}. These functions lie in H by the Banach lattice assumption and are
obviously nonnegative.

Now suppose that (a) fails, so r(V) > 1. Since V is both positive and compact, the
Krein–Rutman theorem (see theorem 41.2 of Zaanen (1997)) implies existence of an
eigenfunction e such that Ve = r(V)e. Hence

‖Tn0− Tne‖ = ‖Vn0−Vne‖ = ‖0− r(V)ne‖ = r(V)n‖0− e‖

As e is an eigenfunction it must be nonzero, so we have two points in H+ such
that the distance between them fails to converge to zero. Such sequences cannot
converge to the same point, so (c) cannot hold. �

Proof of theorem 3.2. Let I denote the identity map on H. Since r(V) < 1, there
exists an i ∈ N such that ‖Vi‖ < 1. As H is a Banach space, the Neumann series
theorem then implies that (I −V)−1 is well-defined onH and equals ∑∞

i=0 Vi (see,
e.g., theorem 2.3.1 and corollary 2.3.3 of Atkinson and Han (2009)). In particular,
h∗ = ∑∞

n=0 Vn ĝ is a well-defined element of H (using assumption 3.1, which gives
ĝ ∈ H). Moreover, h∗ = (I −V)−1 ĝ and hence

h∗ = Vh∗ + ĝ. (38)
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Part (a) is now established.

Regarding (b), let {Y∗t } be defined by Y∗t = h∗(Xt) for all t. To show that this
process solves (4), we need to show that it is nonnegative, almost everywhere finite
and satisfies (4) with probability one. The first two claims follow immediately from
Y∗t =

∫
h∗(Xt) and our assumptions on H+. Regarding the third, observe that, for

any fixed t ∈ Z, we have

Et [Φt+1(Y∗t+1 + Gt+1)] = Et
{

φ(Xt, Xt+1, ηt+1)[Y∗t+1 + g(Xt, Xt+1, ηt+1)]
}

=
∫ ∫

φ(Xt, x′, η)h∗(x′)ν(dη)Π(Xt, dx′) + ĝ(Xt)

= Vh∗(Xt) + ĝ(Xt)

In view of (38), this last expression evaluates to h∗(Xt) = Y∗t . Thus, {Y∗t } satisfies
(4), and claim (b) is established.

Regarding (c), as a first step we show that

Vn−1 ĝ(Xt) = Et

n

∏
i=1

Φt+iGt+n (39)

with probability one for all n ∈ N. To see this, consider first the case n = 1. By the
definition of ĝ we have

V0 ĝ(Xt) = ĝ(Xt) =
∫ ∫

φ(Xt, x′, η)g(Xt, x′, η)ν(dη)Π(Xt, dx′)

= Et φ(Xt, Xt+1, ηt+1)g(Xt, Xt+1, ηt+1) = Et Φt+1Gt+1.

Thus, (39) holds when n = 1. Now suppose it holds at arbitrary n ∈ N. We claim
it also holds at n + 1. Indeed,

Vn ĝ(Xt) =
∫ ∫

φ(Xt, x′, η)Vn−1 ĝ(x′)ν(dη)Π(Xt, dx′)

= Et φ(Xt, Xt+1, ηt+1)Vn−1 ĝ(Xt+1)

Using the induction hypothesis and the law of iterated expectations,

Vn ĝ(Xt) = Et Φt+1Et+1

n

∏
i=2

Φt+iGt+n = Et

n

∏
i=1

Φt+iGt+n.

Thus, (39) holds for all n.
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To complete the proof of (c), we use h∗ = ∑n>0 Vn ĝ and (39) to obtain

h∗(Xt) =
∞

∑
n=1

Vn−1 ĝ(Xt) =
∞

∑
n=1

Et

n

∏
i=1

Φt+iGt+n = Et

[
∞

∑
n=1

n

∏
i=1

Φt+iGt+n

]
.

The last equality in the previous display follows from the monotone convergence
theorem.

Thus, h∗(Xt) is indeed equal almost surely to YF
t in (6). The forward projection is

finite almost surely because of this equality and the finite first moment of h∗(Xt),
which was proved in part (b).

Regarding part (d) of theorem 3.2, let {Yt} be a sequence satisfying both (4) and
Yt = h(Xt) for some h ∈ H. Forward iteration then gives

Yt −Y∗t = Et

[
n

∏
i=1

Φt+i[h(Xt+n)− h∗(Xt+n)]

]
.

This is equivalent to

Yt −Y∗t = Vnq(Xt) where q := h− h∗.

Thus, for any n ∈ N we have

E|Yt −Y∗t | = E|Vnq(Xt)|

By the spectral radius condition r(V) < 1 we have ‖Vnq‖ 6 ‖Vn‖‖q‖ → 0 as n→
∞. By the properties on the norm ‖ · ‖ imposed in the statement of claim (d), this
yields E|Vnq(Xt)| → 0 as n → ∞, from which we conclude that E|Yt − Y∗t | = 0,
and hence P{Yt = Y∗t } = 1. Since the intersection of countable many probability
one sets has probability one, the statement in (14) is established. Claim (d) is thus
verified and the proof of theorem 3.2 is complete. �

Proposition 8.1. IfH = L2(π) and the conditions of theorem 3.2 hold, then any station-
ary solution to (4) with finite second moment is indistinguishable from {Y∗t }.

Proof of proposition 8.1. Let {Yt} be a stationary solution to (4) with finite second
moment. Fixing t and iterating on (4) yields

Yt = Et

[
n

∑
j=1

j

∏
i=1

Φt+iGt+j +
n

∏
i=1

Φt+iYt+n

]
for any n ∈ N.



32

Subtracting the analogous expression for Y∗t gives

E|Yt −Y∗t | 6 E
[

n

∏
i=1

Φt+i · |Yt+n −Y∗t+n|
]

.

From this bound and the Cauchy–Schwarz inequality we have

E|Yt −Y∗t | 6

√√√√E [ n

∏
i=1

Φ2
t+i

]
E(Yt+n −Y∗t+n)

2.

By assumption, both {Yt} and {Y∗t } are stationary and have finite second mo-
ments. Moreover, by the definition of V we have E∏n

i=1 Φ2
t+i = ‖Vn

1‖2 where
1 ∈ L2(π) is unity everywhere on X and ‖ · ‖ is the L2(π) norm. Since ‖Vn

1‖ =

‖Vn‖ → 0 as n → ∞ by the spectral radius assumption, we conclude that E|Yt −
Y∗t | = 0. Hence Yt = Y∗t with probability one. Since the time index is countable, it
follows that {Yt} and {Y∗t } are indistinguishable, as was to be shown. �

In the following result we use the fact that the space (H, ‖ · ‖) is assumed to be
a Banach lattice when endowed with the pointwise order, which implies that the
positive cone (the functions in H taking nonnegative values) is both normal and
reproducing.14

Proof of theorem 2.1. Let h and L be as in the statement of the theorem and let H+

be the positive cone of H. Recall that r(h, L) = lim supn→∞ ‖Lnh‖1/n is the lo-
cal spectral radius of L at h. From the definition of r(L) it suffices to show that
r(h, L) > r(L). To this end, let λ be a constant satisfying λ > r(h, L) and let

hλ :=
∞

∑
n=0

Lnh
λn+1 . (40)

The point hλ is a well-defined element of H+ by lim supn→∞ ‖Lnh‖1/n < λ and
Cauchy’s root test for convergence. It is also quasi-interior, since the sum in (40)
includes the quasi-interior element h, and since L maps H+ into itself. Moreover,
by the standard Neumann series theory of linear equations (e.g., Krasnosel’skii

14The positive cone of a partially ordered normed linear space is called reproducing if its linear
span equals the whole space. It is called normal if there exists a constant N such that ‖g‖ 6 N‖h‖
whenever 0 6 g 6 h.



33

et al. (2012), theorem 5.1), the point hλ also has the representation hλ = (λI −
L)−1h, from which we obtain λhλ − Lhλ = h. Because h ∈ H+, this implies that

Lhλ 6 λhλ. (41)

Applying inequality (41), compactness of L, quasi-interiority of hλ and theorem 5.5
(a) of Krasnosel’skii et al. (2012), we must have r(L) 6 λ. Since this inequality was
established for an arbitrary λ satisfying λ > r(h, L), we conclude that r(h, L) >
r(L). �

Proof of theorem 3.3. Let H and V have the stated properties and suppose that h ∈
H+ and h solves the functional equation (10), which is to say that h = Vh + ĝ.
Iterating on this equation, we have

h = ĝ + Vĝ + · · ·+ Vn ĝ + Vn+1h.

Since H is a Banach lattice and all terms on the right hand side of this expression
are nonnegative, we must have ‖Vn ĝ‖ 6 ‖h‖ for all n ∈ N.

On the other hand, ĝ is a strictly positive element of H+ and therefore quasi-
interior to H+. Applying theorem 2.1, we have ‖Vn ĝ‖1/n → r(V) as n → ∞.
Since r(V) > 1, this implies that ‖Vn ĝ‖ → ∞. Contradiction. �

Proposition 8.2. If assumption 3.2 holds and then the valuation operator V is a bounded
linear operator on L1(π) and, for every strictly positive function h ∈ L1(π), we have

lim
n→∞

{∫
Vnh dπ

}1/n
= r(V). (42)

Proof of proposition 8.2. Recall that an operator T : L1(π)→ L1(π) is called a Hille–
Tamarkin operator if T takes the form

Th(x) =
∫

k(x, x′)h(x′)π(dx′)

for some jointly measurable kernel k on X×X and, in addition, k satisfies the finite
double norm property ∫

sup
x′∈X
|k(x, x′)|π(dx) < ∞. (43)

Hille–Tamarkin operators on L1(π) have the property that T2 is compact whenever
π is σ-finite, as it is in our case. See, for example, theorem 4.5 of Grobler (1970).
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Under the conditions of proposition 8.2, the valuation operator V is a Hille–Tamarkin
operator. Indeed, V can be expressed as

Vh(x) =
∫

h(x′)
∫

φ(x, x′, η)ν(dη)π(x′ | x)dx′

=
∫

h(x′)
∫

φ(x, x′, η)ν(dη)
π(x′ | x)

π(x′)
π(x′)dx′.

With

k(x, x′) =
∫

φ(x, x′, η)ν(dη)
π(x′ | x)

π(x′)
π(x′)

and the conditions of proposition 8.2 in force, the integrability condition (43) is
satisfied, and V is Hille–Tamarkin as claimed.

As a result, V2 is a compact linear operator on L1(π). Evidently it is positive. Since
h is assumed to be everywhere positive and hence is quasi-interior, it follows from
theorem 2.1 that

{∫
V2nh dπ

}1/n converges to r(V2). But r(V2) = r(V)2, so{∫
V2nh dπ

}1/(2n)
→ r(V).

By our assumptions on V we know that Vh inherits the quasi-interiority of h, so
another application of theorem 2.1, this time to V2 with initial condition Vh, yields{∫

V2nVh dπ

}1/n
=

{∫
V2(n+1)h dπ

}1/n
→ r(V)2.

∴
{∫

V2(n+1)h dπ

}1/(2n)
→ r(V).

Some straightforward analysis then shows that{∫
V2(n+1)h dπ

}1/(2(n+1))

→ r(V)

is also valid. We have now shown that
{∫

Vkh dπ
}1/k

converges to r(V) along
both even and odd subsequences. Hence the sequence itself converges to r(V),
and (42) is confirmed.

The second claim in proposition 8.2 is evident from the validity of (42) and the
proof of theorem 3.3. �
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Proof of proposition 3.4. Let 1 be equal to unity everywhere on X. Simple manipula-
tions show that Vn

1(Xt) = Et ∏n
i=1 Φt+i. By this equality and the law of iterated

expectations,

rΦ =

{
E

n

∏
i=1

Φt+i

}1/n

=

{
EEt

n

∏
i=1

Φt+i

}1/n

=

{∫
Vn
1dπ

}1/n
→ r(V),

as n→ ∞, with the convergence due to positivity of 1 and (42). �

Proof of proposition 3.5. Let the conditions of the proposition hold but suppose, con-
trary to the claim in the proposition, that {Yt} is a stationary solution to the price
recursion (4) with finite first moment. Iterating on (4) gives

Yt = Et

[
m

∑
n=1

n

∏
i=1

Φt+iGt+n +
m

∏
i=1

Φt+iYt+m

]
for any m ∈ N.

Taking expectations and using the law of iterated and the nonnegativity of {Yt},
we have

EYt >

[
m

∑
n=1

E

n

∏
i=1

Φt+iGt+n

]
for any m ∈ N.

Together, (16) in proposition 3.4 and the converse component of the Cauchy root
criterion imply that this sum diverges. HenceEYt = ∞, contradicting our assump-
tion that the solution has finite first moment. �

Proof of proposition 5.1. Let the conditions of proposition 8.2 hold. Regarding part
(a) of proposition 5.1, that rM = rΦ in the present setting follows immediately from
Φt+1 = Mt+1Dt+1/Dt. That rΦ = r(V) was shown in proposition 3.4.

Regarding part (b), from part (a) we have rM < 1 implies r(V) < 1. Hence we can
employ theorem 3.2 and conclude the claim in (b) is true provided that assump-
tion 3.1 is satisfied. That assumption 3.1 is true when H = L1(π) follows from
proposition 8.2, which ensures us that V is a bounded linear operator on L1(π).15

That part (c) holds follows directly from rM = r(V) and proposition 3.5. �

15An immediate consequence is that V maps L1(π) to itself. Moreover, ĝ ∈ L1(π) because
ĝ = V1 and 1 ∈ L1(π) since π is a probability measure.
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BOROVIČKA, J. AND J. STACHURSKI (2017): “Necessary and sufficient conditions
for existence and uniqueness of recursive utilities,” Tech. rep., NBER.

BROGUEIRA, J. AND F. SCHÜTZE (2017): “Existence and uniqueness of equilibrium
in Lucas’ asset pricing model when utility is unbounded,” Economic Theory Bul-
letin, 5, 179–190.

BRUNNERMEIER, M. K. (2016): “Bubbles,” in Banking Crises, Springer, 28–36.
CALIN, O. L., Y. CHEN, T. F. COSIMANO, AND A. A. HIMONAS (2005): “Solving

asset pricing models when the price–dividend function is analytic,” Economet-
rica, 73, 961–982.

CAMPBELL, J. Y. AND J. H. COCHRANE (1999): “By Force of Habit: A
Consumption-Based Explanation of Aggregate Stock Market Behavior,” The
Journal of Political Economy, 107, 205–251.

CHRISTENSEN, T. M. (2017): “Nonparametric stochastic discount factor decompo-
sition,” Econometrica, 85, 1501–1536.

COCHRANE, J. H. AND L. P. HANSEN (1992): “Asset pricing explorations for
macroeconomics,” NBER macroeconomics annual, 7, 115–165.

DUFFIE, D. (2010): Dynamic Asset Pricing Theory, Princeton University Press.
EPSTEIN, L. G. AND S. E. ZIN (1989): “Substitution, risk aversion, and the tempo-

ral behavior of consumption and asset returns: A theoretical framework,” Econo-
metrica, 937–969.

GROBLER, J. (1970): “Compactness conditions for integral operators in Banach
function spaces,” in Indagationes Mathematicae (Proceedings), Elsevier, vol. 73,
287–294.



37

HANSEN, L. P. (2012): “Dynamic valuation decomposition within stochastic
economies,” Econometrica, 80, 911–967.

HANSEN, L. P. AND E. RENAULT (2009): “Pricing kernels and stochastic discount
factors,” Encyclopedia of Quantitative Finance, 1418–1427.

HANSEN, L. P. AND J. A. SCHEINKMAN (2009): “Long-Term Risk: An Operator
Approach,” Econometrica, 77, 177–234.

KRASNOSEL’SKII, M., G. VAINIKKO, R. ZABREYKO, Y. RUTICKI, AND

V. STET’SENKO (2012): Approximate Solution of Operator Equations, Springer
Netherlands.

KREPS, D. M. (1981): “Arbitrage and equilibrium in economies with infinitely
many commodities,” Journal of Mathematical Economics, 8, 15–35.

LUCAS, R. E. (1978): “Asset prices in an exchange economy,” Econometrica, 1429–
1445.

MEHRA, R. AND E. C. PRESCOTT (2003): “The equity premium in retrospect,”
Handbook of the Economics of Finance, 1, 889–938.

POHL, W., K. SCHMEDDERS, AND O. WILMS (2018): “Higher Order Effects in As-
set Pricing Models with Long-Run Risks,” The Journal of Finance, 73, 1061–1111.

QIN, L. AND V. LINETSKY (2017): “Long-Term Risk: A Martingale Approach,”
Econometrica, 85, 299–312.

SCHORFHEIDE, F., D. SONG, AND A. YARON (2018): “Identifying long-run risks:
A Bayesian mixed-frequency approach,” Econometrica, 86, 617–654.

WAGNER, C. H. (1982): “A Generic Approach to Iterative Methods,” Mathematics
Magazine, 55, 259–273.

ZAANEN, A. C. (1997): Introduction to Operator Theory in Riesz Spaces, Springer.
ZABREIKO, P., M. KRASNOSEL’SKII, AND V. Y. STETSENKO (1967): “Bounds for the

spectral radius of positive operators,” Mathematical Notes, 1, 306–310.


	1. Introduction
	2. Preliminaries
	2.1. Forward Looking Recursions
	2.2. Markov Solutions

	3. Results
	3.1. The Equilibrium Price Operator
	3.2. Further Results for the Stable Case
	3.3. Further Results for the Unstable Case
	3.4. Further Results for Integrable Functions
	3.5. Calculating the Spectral Radius

	4. Applications Part I: Stationary Dividends
	4.1. Bounded Utility
	4.2. Constant Relative Risk Aversion

	5. Applications Part II: Stationary Dividend Growth
	5.1. CRRA Utility and Stochastic Dividend Growth
	5.2. Long Run Risk Part I
	5.3. Long Run Risk Part II

	6. Applications Part III: Comparison with Alternatives
	6.1. Habit Persistence
	6.2. One Step Contractions in the Long Run Risk Model

	7. Conclusion
	8. Appendix
	References

