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OUTLINE

1. Brief summary of the paper
• role of theory for measurement
• questions

2. An alternative investigation
• large deviation theory
• non-local mobility
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BACKGROUND

Wealth dynamics became an important research area

• inequality, wealth mobility, impact on aggregate growth, business
dynamism, monopoly power due to concentration, political clout, etc.

• way too many papers to list here

How can we measure contributions to the wealth growth of top wealth
percentiles?

• due to incumbents and due to new entrants (displacement)

With enough data =⇒ simply count!

• trivial if we have large panel datasets and study large groups
• not the case of Forbes 400 (top 0.000157% of U.S. adult population)

• noise, correlations between individuals (Waltons, Page/Brin/Schmidt,
Gates/Ballmer/Allen), …
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IDEA

Impose elementary theoretical restrictions on individual wealth dynamics

• relative wealth follows an Itô process

dwit
wit

= µt (wit)dt+ νt (wit)dBit

• compute evolution dSt of wealth share in upper quantile p

St =
∫ ∞

qt(p)
wgt (w)dw
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IDEA

Law of motion

dSt = StE [µt (w) | w ≥ qt]︸ ︷︷ ︸
within

dt+ 1
2 [qtνt (qt)]

2 gt (qt)︸ ︷︷ ︸
displacement

dt

• qt is the relative wealth level at quantile p

Where does the displacement term come from?

• probability current

J (w, t) = wµt (w) gt (w)︸ ︷︷ ︸
deterministic drift

− ∂

∂w

[
1
2 (wνt (w))

2 gt (w)
]

︸ ︷︷ ︸
‘churning’
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PARAMETRIC RESTRICTIONS

Utilize empirical evidence on the Pareto shape of the upper tail of the
wealth distribution.

P (wit ≥ w) = Cw−ζ

• ζ > 1 is the shape parameter (higher ζ , less inequality)
• e.g., when µt and νt are independent of w and constant over time

Instead of nonparametric estimation, infer the steady-state shape
parameter ζ and determine the displacement term as

1
2 (ζ − 1) ν2

• the distribution is not in steady state but the approximation is good
and ζ moves only slowly over time.

• ζ can be estimated from a richer cross-section

6/16



PARAMETRIC RESTRICTIONS

Utilize empirical evidence on the Pareto shape of the upper tail of the
wealth distribution.

P (wit ≥ w) = Cw−ζ

• ζ > 1 is the shape parameter (higher ζ , less inequality)
• e.g., when µt and νt are independent of w and constant over time

Instead of nonparametric estimation, infer the steady-state shape
parameter ζ and determine the displacement term as

1
2 (ζ − 1) ν2

• the distribution is not in steady state but the approximation is good
and ζ moves only slowly over time.

• ζ can be estimated from a richer cross-section

6/16



RESULTS

• displacement accounts for more than half of the top wealth growth
• role of displacement declines over time

• consistent with recent literature on wealth and business dynamics

• diffusion model predicts the displacement term well
• higher-order (jump) terms have a small effect

• except during the dot-com boom

• a larger number of robustness checks and alternative specifications
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COMMENT 1: CAVEAT WITH PARAMETRIC RESTRICTIONS

If µt and νt are independent of w and constant over time then the only
possible choice is µ = 0.

• wit is wealth relative to aggregate, then aggregate and individual growth
rates must be the same =⇒ µ = 0.

• but then ζ = 1− 2µ/ν2 = 1 and the distribution does not have a finite
mean

How to resolve this?

• Pareto shape only aplies to the tail
• wealth relative to a different benchmark
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COMMENT 2: BETWEEN AND WITHIN INDUSTRIES DECOMPOSITION

The between/within industry decomposition would deserve more
explanation.

• It seems that the decomposition uses two terms

1
2 (ζ − 1) ν2within and 1

2 (ζ − 1) ν2between

where ν2within and ν2between are simply the within and between variances
according to Fama–French industry portfolios

• Decomposition attributes most of the displacement effect to the within
industry component (higher 2within).

But how is it related to the within and between variances in the portfolios in
the Forbes 400 list?

• These portfolios are highly selective, is FF representative?
• What about non-traded wealth?
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COMMENT 3: PERSISTENCE OF WEALTH DYNAMICS

In this model, everybody is ex ante identical

• some people get rich because they are lucky
• aligns with literature that stresses the role of idiosyncratic returns

Alternative: heterogeneity

• entrepreneurial skills, other forms of human capital

The two stories have different predictions for survival patterns in top
quantiles

• paper computes expected survival times predicted by the model
• is the data informative to produce reliable hazard rates for survival?
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LARGE DEVIATION THEORY

The displacement term is a local concept

• rate of crossing the top p-th quantile of the wealth distribution

What about non-local counterparts?

• chance of getting into the top p-th quantile, starting from a given level
of wealth w̄.

• characterize the ‘typical’ paths to reach the quantile.

Discuss concepts related to the theory of large deviations.
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LARGE DEVIATION THEORY

Consider a class of wealth processes indexed by ε

dwε
t = µt (wε

t )dt+
√
εσt (ω

ε
t )dBt.

We want to study
P (wε

T ≥ r) given wε
0 = w̄.

• other state variables possible (suppressed here)

Construct the function hr (w) = 1 {w ≥ r}. Then

P (wε
T ≥ r) = E0 [hr (wε

T)] .
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VARADHAN’S LEMMA

We are interested in the limit

lim
ε↘0

ε log E0 [hr (wε
T)]

.
= −I (w̄, r, T)

• as ε ↘ 0, the threshold r is more relatively more distant, given the
underlying uncertainty.

Solution can be characterized by the following deterministic problem:

I (w̄, r, T) = inf
u

∫ T

0

1
2 |ut|

2 dt

subject to
ẇt = µt (wt) + σt (wt)ut, w0 = w̄, wT ≥ r.

• choosing a particular path of shock realizations leading to wT ≥ r.
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HAMILTON–JACOBI–BELLMAN EQUATION

The associated Hamilton–Jacobi–Bellman equation is

0 = inf
u

1
2 |u|

2 + [µt (w) + σt (w)u] Iw (w, t) + It (w, t)

• optimal control (limiting most likely path)

u∗t = −σt (w) Iw (w, t)

Hence we obtain a Riccati equation

0 = − 1
2σ

2
t (w) Iw (w, t)2 + µt (w) Iw (w, t) + It (w, t)

with boundary condition I (w, T) = ∞ if w < r and I (w, T) = 0 otherwise.
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MOST LIKELY PATH

u∗t = −σt (w) Iw (w, t)

Which shocks get you closer to the top quantile?

• shocks that occur when volatility σ (w) is high (static effect)
• shocks that increase the probability of crossing the threshold quickly
(−Iw high, dynamic effect)

Compare this to the local displacement (here, σt (w) = wνt (w))

1
2 [wνt (w)]

2 gt (w)

• again, static ([wνt (w)]2) and dynamic (gt (w)) effect
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CONCLUSION

Simple (but elegant) theory to aid measurement.

• leverages evidence on the approximate Pareto shape of the wealth
distribution

• turns a non-parametric accounting exercise into a parametric
estimation problem

• even without an explicit model of investor optimization etc.
• lots of robustness checks
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